Shocking a transparent semiconducting oxide to 15 Mbar: Z experiments and EOS modeling
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Hypersonic aerothermodynamics is an important domain of modern multiphysics simulation. The Multi-Fidelity Toolkit is a simulation tool being developed at Sandia National Laboratories to predict aerodynamic properties for compressible flows from a range of physics fidelities and computational speeds. These models include the Reynolds-averaged Navier–Stokes (RANS) equations, the Euler equations with momentum-energy integral technique (MEIT), and modified Newtonian aerodynamics with flat-plate boundary layer (MNA+FPBL) equations, and they can be invoked independently or coupled with hierarchical Kriging to interpolate between high-fidelity simulations using lower-fidelity data. However, as with any new simulation capability, verification and validation are necessary to gather credibility evidence. This work describes formal code- and solution-verification activities, as well as model validation with uncertainty considerations. Code verification activities on the MNA+FPBL model build on previous work by focusing on the viscous portion of the model. Viscous quantities of interest are compared against those from an analytical solution for flat-plate, inclined-plate, and cone geometries. The code verification methodology for the MEIT model is also presented. Test setup and results of code verification tests on the laminar and turbulent models within MEIT are shown. Solution-verification activities include grid-refinement studies on simulations that model the HIFiRE-1 wind tunnel experiments. These experiments are used for validation of all model fidelities. A thorough validation comparison with prediction error and uncertainty is also presented. Three additional HIFiRE-1 experimental runs are simulated in this study, and the solution verification and validation work examines the effects of the associated parameter changes on model performance. Finally, a study is presented that compares the computational costs and fidelities from each of the different models.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physical Review B
Sapphire (Al2O3) is a major constituent of the Earth's mantle and has significant contributions to the field of high-pressure physics. Constraining its Hugoniot over a wide pressure range and identifying the location of shock-driven phase transitions allows for development of a multiphase equation of state and enables its use as an impedance-matching standard in shock physics experiments. Here, we present measurements of the principal Hugoniot and sound velocity from direct impact experiments using magnetically launched flyers on the Z machine at Sandia National Laboratories. The Hugoniot was constrained for pressures from 0.2-2.1 TPa and a four-segment piecewise linear shock-velocity-particle-velocity fit was determined. First-principles molecular dynamics simulations were conducted and agree well with the experimental Hugoniot. Sound-speed measurements identified the onset of melt between 450 and 530 GPa, and the Hugoniot fit refined the onset to 525±13 GPa. A phase diagram which incorporates literature diamond-anvil cell data and melting measurements is presented.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.