Publications

5 Results

Search results

Jump to search filters

User Impressions and Gait Analysis of Exoskeleton Device Usage in Generalized Tank Farm Activities

Nuclear Science and Engineering

Bottom, Janelle; Wood, David; Mina, Tamzidul; Bradley, Savannah; Rittikaidachar, Michal; Miera, Alexandria; Wheeler, Jason

Tank farm workers involved in nuclear cleanup activities perform physically demanding tasks, typically while wearing heavy personal protective equipment (PPE). Exoskeleton devices have the potential to bring considerable benefit to this industry but have not been thoroughly studied in the context of nuclear cleanup. In this paper, we examine the performance of exoskeletons during a series of tasks emulating jobs performed on tank farms while participants wore PPE commonly deployed by tank farm workers. The goal of this study was to evaluate the effects of commercially available lower-body exoskeletons on a user’s gait kinematics and user perceptions. Three participants each tested three lower-body exoskeletons in a 70-min protocol consisting of level treadmill walking, incline treadmill walking, weighted treadmill walking, a weight lifting session, and a hand tool dexterity task. Results were compared to a no exoskeleton baseline condition and evaluated as individual case studies. The three participants showed a wide spectrum of user preferences and adaptations toward the devices. Individual case studies revealed that some users quickly adapted to select devices for certain tasks while others remained hesitant to use the devices. Temporal effects on gait change and perception were also observed for select participants in device usage over the course of the device session. Device benefit varied between tasks, but no conclusive aggregate trends were observed across devices for all tasks. Evidence suggests that device benefits observed for specific tasks may have been overshadowed by the wide array of tasks used in the protocol.

More Details

Dynamic Shear and Normal Force Detection in a Soft Insole Using Hybrid Optical & Piezoresistive Sensors

Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics

Mcarthur, Daniel; Branyan, Callie A.; Tansel, Derya Z.; Liu, Eric V.; Mazumdar, Anirban; Miera, Alexandria; Rittikaidachar, Michal; Spencer, Steven J.; Wood, David; Wheeler, Jason

The development of multi-axis force sensing ca-pabilities in elastomeric materials has enabled new types of human motion measurement with many potential applications. In this work, we present a new soft insole that enables mobile measurement of ground reaction forces (GRFs) outside of a lab-oratory setting. This insole is based on hybrid shear and normal force detecting (SAND) tactile elements (taxels) consisting of optical sensors optimized for shear sensing and piezoresistive pressure sensors dedicated to normal force measurement. We develop polynomial regression and deep neural network (DNN) GRF prediction models and compare their performance to ground-truth force plate data during two walking experiments. Utilizing a 4-layer DNN, we demonstrate accurate prediction of the anterior-posterior (AP), medial-lateral (ML) and vertical components of the GRF with normalized mean absolute errors (NMAE) of <5.1 %, 4.1 %, and 4.5%, respectively. We also demonstrate the durability of the hybrid SAND insole construction through more than 20,000 cycles of use.

More Details
5 Results
5 Results