Publications

10 Results
Skip to search filters

Uncertainty and Sensitivity Analysis Methods and Applications in the GDSA Framework (FY2022)

Swiler, Laura P.; Basurto, Eduardo B.; Brooks, Dusty M.; Eckert, Aubrey C.; Leone, Rosemary C.; Mariner, Paul M.; Portone, Teresa P.; Smith, Mariah L.

The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (FCT) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and high-level nuclear waste (HLW). Two high priorities for SFWST disposal R&D are design concept development and disposal system modeling. These priorities are directly addressed in the SFWST Geologic Disposal Safety Assessment (GDSA) control account, which is charged with developing a geologic repository system modeling and analysis capability, and the associated software, GDSA Framework, for evaluating disposal system performance for nuclear waste in geologic media. GDSA Framework is supported by SFWST Campaign and its predecessor the Used Fuel Disposition (UFD) campaign.

More Details

Scoping Analysis of MACCS Modeling Improvements for the Study of Protective Action Recommendations

Smith, Mariah L.; Walton, Fotini W.; Dise, Joshua T.; Leute, Jennifer E.

In late 2004, the U.S. Nuclear Regulatory Commission (NRC) initiated a project to analyze the relative efficacy of alternative protective action strategies in reducing consequences to the public from a spectrum of nuclear power plant core melt accidents. The study is documented in NUREG/CR-6953, “Review of NUREG-0654, Supplement 3, ‘Criteria for Protective Action Recommendations for Severe Accidents,’” Volumes 1, 2, and 3. The Protective Action Recommendations (PAR) study provided a technical basis for enhancing the protective action guidance contained in Supplement 3, “Guidance for Protective Action Strategies,” to NUREG-0654/FEMA-REP-1, Rev. 1, “Criteria for Preparation and Evaluation of Radiological Emergency Response Plans and Preparedness in Support of Nuclear Power Plants, ” dated November 2011. In the time since, a number of important changes and additions have been made to the MACCS code suite, the nuclear accident consequence analysis code used to perform the study. The purpose of this analysis is to determine whether the MACCS results used in the PAR study would be different given recent changes to the MACCS code suite and input parameter guidance. Updated parameters that were analyzed include cohorts, keyhole evacuation, shielding and exposure parameters, compass sector resolution, and a range of source terms from rapidly progressing accidents. Results indicate that using updated modeling assumptions and capabilities may lead to a decrease in predicted health consequences for those within the emergency planning zone compared to the original PAR study.

More Details

Demonstration of MELCOR and MACCS Capabilities for Molten Salt Reactor Decay Heat Removal During both Normal Operations and Salt Spill Scenarios

Smith, Mariah L.; Leute, Jennifer E.; Wagner, Kenneth C.; Clavier, Kyle C.

This report provides a demonstration of MELCOR and MELCOR Accident Consequence Code System (MACCS) capabilities to perform a dose assessment for a Molten Salt Reactor (MSR) off-gas system. A primary containment system salt spill is used as the off-normal scenario, along with a normal operation dose assessment for comparison. This report discusses the tools, methods, and information used in this assessment so that it may be utilized as a starting point for future advanced reactor consequence analyses. This report also highlights several gaps, to include the need for reactor inventory information specific to advanced reactors, and the need for specific atmospheric transport models that take into account the unique deposition behaviors of tritium and carbon-14, and makes recommendations for closing these gaps. This report satisfies the DOE NE Milestone M4RD-21SN0601062.

More Details

Uncertainty and Sensitivity Analysis Methods and Applications in the GDSA Framework (FY2021)

Swiler, Laura P.; Basurto, Eduardo B.; Brooks, Dusty M.; Eckert, Aubrey C.; Leone, Rosemary C.; Mariner, Paul M.; Portone, Teresa P.; Smith, Mariah L.; Stein, Emily S.

The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (FCT) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and high-level nuclear waste (HLW). Two high priorities for SFWST disposal R&D are design concept development and disposal system modeling. These priorities are directly addressed in the SFWST Geologic Disposal Safety Assessment (GDSA) control account, which is charged with developing a geologic repository system modeling and analysis capability, and the associated software, GDSA Framework, for evaluating disposal system performance for nuclear waste in geologic media. GDSA Framework is supported by SFWST Campaign and its predecessor the Used Fuel Disposition (UFD) campaign. This report fulfills the GDSA Uncertainty and Sensitivity Analysis Methods work package (SF-21SN01030404) level 3 milestone, Uncertainty and Sensitivity Analysis Methods and Applications in GDSA Framework (FY2021) (M3SF-21SN010304042). It presents high level objectives and strategy for development of uncertainty and sensitivity analysis tools, demonstrates uncertainty quantification (UQ) and sensitivity analysis (SA) tools in GDSA Framework in FY21, and describes additional UQ/SA tools whose future implementation would enhance the UQ/SA capability of GDSA Framework. This work was closely coordinated with the other Sandia National Laboratory GDSA work packages: the GDSA Framework Development work package (SF-21SN01030405), the GDSA Repository Systems Analysis work package (SF-21SN01030406), and the GDSA PFLOTRAN Development work package (SF-21SN01030407). This report builds on developments reported in previous GDSA Framework milestones, particularly M3SF 20SN010304032.

More Details
10 Results
10 Results