Astra, deployed in 2018, was the first petascale supercomputer to utilize processors based on the ARM instruction set. The system was also the first under Sandia's Vanguard program which seeks to provide an evaluation vehicle for novel technologies that with refinement could be utilized in demanding, large-scale HPC environments. In addition to ARM, several other important first-of-a-kind developments were used in the machine, including new approaches to cooling the datacenter and machine. This article documents our experiences building a power measurement and control infrastructure for Astra. While this is often beyond the control of users today, the accurate measurement, cataloging, and evaluation of power, as our experiences show, is critical to the successful deployment of a large-scale platform. While such systems exist in part for other architectures, Astra required new development to support the novel Marvell ThunderX2 processor used in compute nodes. In addition to documenting the measurement of power during system bring up and for subsequent on-going routine use, we present results associated with controlling the power usage of the processor, an area which is becoming of progressively greater interest as data centers and supercomputing sites look to improve compute/energy efficiency and find additional sources for full system optimization.

DOE maintains an up-to-date documentation of the number of available full drawdowns of each of the caverns at the U.S. Strategic Petroleum Reserve (SPR). This information is important for assessing the SPR’s ability to deliver oil to domestic oil companies expeditiously if national or world events dictate a rapid sale and deployment of the oil reserves. Sandia was directed to develop and implement a process to continuously assess and report the evolution of drawdown capacity, the subject of this report. This report covers impacts on drawdown availability due to SPR operations during Calendar Year 2022. A cavern has an available drawdown if, after that drawdown, the long-term stability of the cavern, the cavern field, or the oil quality are not compromised. Thus, determining the number of available drawdowns requires the consideration of several factors regarding cavern and wellbore integrity and stability, including stress states caused by cavern geometry and operations, salt damage caused by dilatant and tensile stresses, the effect of enhanced creep on wellbore integrity, and the sympathetic stress effect of operations on neighboring caverns. Finite-element geomechanical models have been used to determine the stress states in the pillars following successive drawdowns. By computing the tensile and dilatant stresses in the salt, areas of potential structural instability can be identified that may represent red flags for additional drawdowns. These analyses have found that many caverns will maintain structural integrity even when grown via drawdowns to dimensions resulting in a pillar-to-diameter ratio of less than 1.0. The analyses have also confirmed that certain caverns should only be completely drawn down one time. As the SPR caverns are utilized and partial drawdowns are performed to remove oil from the caverns (e.g., for oil sales, purchases, or exchanges authorized by the Congress or the President), the changes to the cavern caused by these procedures must be tracked and accounted for so that an ongoing assessment of the cavern’s drawdown capacity may be continued. A methodology for assessing and tracking the available drawdowns for each cavern is reiterated. This report is the latest in a series of annual reports, and it includes the baseline available drawdowns for each cavern, and the most recent assessment of the evolution of drawdown expenditures. A total of 222 million barrels of oil were released in calendar-year 2022. A nearly-equal amount of raw water was injected, resulting in an estimated 34 million barrels of cavern leaching. Twenty caverns have now expended a full drawdown. Cavern BC 18 has expended all its baseline available drawdowns, and has no drawdowns remaining. Cavern BM 103 has expended one of its two baseline drawdowns, and is now a single-drawdown cavern. All other caverns with an expenditure went from at-least-5 to at-least-4 remaining drawdowns.

The ground truth program used simulations as test beds for social science research methods. The simulations had known ground truth and were capable of producing large amounts of data. This allowed research teams to run experiments and ask questions of these simulations similar to social scientists studying real-world systems, and enabled robust evaluation of their causal inference, prediction, and prescription capabilities. We tested three hypotheses about research effectiveness using data from the ground truth program, specifically looking at the influence of complexity, causal understanding, and data collection on performance. We found some evidence that system complexity and causal understanding influenced research performance, but no evidence that data availability contributed. The ground truth program may be the first robust coupling of simulation test beds with an experimental framework capable of teasing out factors that determine the success of social science research.

This presentation provides information on the experiments to measure the effect of Tantalum (Ta) on critical systems. This talk presents details on the Sandia Critical Experiments Program with the Seven Percent Critical Experiment (7uPCX) and the Burnup Credit Critical Experiment (BUCCX). The presentation highlights motivations, experiment design, and evaluations and publications.

This lecture is on the design of a Uranium Dioxide-Beryllium Oxide UO_{2}-BeO Critical Experiment at Sandia. This presentation provides background info on the Annular Core Research Reactor (ACRR). Additionally, this presentation shows experimental and alternative designs and concludes with a sensitivity analysis.

Finite element models can be used to model and predict the hysteresis and energy dissipation exhibited by nonlinear joints in structures. As a result of the nonlinearity, the frequency and damping of a mode is dependent on excitation amplitude, and when the modes remain uncoupled, quasi-static modal analysis has been shown to efficiently predict this behavior. However, in some cases the modes have been observed to couple such that the frequency and damping of one mode is dependent on the amplitude of other modes. To model the interactions between modes, one must integrate the dynamic equations in time, which is several orders of magnitude more expensive than quasi-static analysis. This work explores an alternative where quasi-static forces are applied in the shapes of two or more modes of vibration simultaneously, and the resulting load–displacement curves are used to deduce the effect of other modes on the effective frequency and damping of the mode in question. This methodology is demonstrated on a simple 2D cantilever beam structure with a single bolted joint which exhibits micro-slip nonlinearity over a range of vibration amplitudes. The predicted frequency and damping are compared with those extracted from a few expensive dynamic simulations of the structure, showing that the quasi-static approach produces reasonable albeit highly conservative bounds on the observed dynamics. This framework is also demonstrated on a 3D structure where dynamic simulations are infeasible.

Finite element models can be used to model and predict the hysteresis and energy dissipation exhibited by nonlinear joints in structures. As a result of the nonlinearity, the frequency and damping of a mode is dependent on excitation amplitude, and when the modes remain uncoupled, quasi-static modal analysis has been shown to efficiently predict this behavior. However, in some cases the modes have been observed to couple such that the frequency and damping of one mode is dependent on the amplitude of other modes. To model the interactions between modes, one must integrate the dynamic equations in time, which is several orders of magnitude more expensive than quasi-static analysis. This work explores an alternative where quasi-static forces are applied in the shapes of two or more modes of vibration simultaneously, and the resulting load–displacement curves are used to deduce the effect of other modes on the effective frequency and damping of the mode in question. This methodology is demonstrated on a simple 2D cantilever beam structure with a single bolted joint which exhibits micro-slip nonlinearity over a range of vibration amplitudes. The predicted frequency and damping are compared with those extracted from a few expensive dynamic simulations of the structure, showing that the quasi-static approach produces reasonable albeit highly conservative bounds on the observed dynamics. This framework is also demonstrated on a 3D structure where dynamic simulations are infeasible.

Moglen, Rachel L.; Barth, Julius; Gupta, Shagun; Kawai, Eiji; Klise, Katherine A.; Leibowicz, Benjamin D.

Natural disasters pose serious threats to Critical Infrastructure (CI) systems like power and drinking water, sometimes disrupting service for days, weeks, or months. Decision makers can mitigate this risk by hardening CI systems through actions like burying power lines and installing backup generation for water pumping. However, the inherent uncertainty in natural disasters coupled with the high costs of hardening activities make disaster planning a challenging task. We develop a disaster planning framework that recommends asset-specific hardening projects across interdependent power and water networks facing the uncertainty of natural disasters. We demonstrate the utility of our model by applying it to Guayama, Puerto Rico, focusing on the risk posed by hurricanes. Our results show that our proposed optimization approach identifies hardening decisions that maintain a high level of service post-disaster. The results also emphasize power system hardening due to the dependency of the water system on power for water treatment and a higher vulnerability of the power network to hurricane damage. Finally, choosing optimal hardening decisions by hedging with respect to all potential hurricane scenarios and their probabilities produces results that perform better on extreme events and are less variable compared to optimizing for only the average hurricane scenario.

We report pulsed dielectric barrier discharges (DBD) in He–H_{2}O and He–H_{2}O–O_{2 } mixtures are studied in near atmospheric conditions using temporally and spatially resolved quantitative 2D imaging of the hydroxyl radical (OH) and hydrogen peroxide (H_{2}O_{2 }). The primary goal was to detect and quantify the production of these strongly oxidative species in water-laden helium discharges in a DBD jet configuration, which is of interest for biomedical applications such as disinfection of surfaces and treatment of biological samples. Hydroxyl profiles are obtained by laser-induced fluorescence (LIF) measurements using 282 nm laser excitation. Hydrogen peroxide profiles are measured by photo-fragmentation LIF (PF-LIF), which involves photo-dissociating H_{2}O_{2 } into OH with a 212.8 nm laser sheet and detecting the OH fragments by LIF. The H_{2}O_{2 } profiles are calibrated by measuring PF-LIF profiles in a reference mixture of He seeded with a known amount of H_{2}O_{2 }. OH profiles are calibrated by measuring OH-radical decay times and comparing these with predictions from a chemical kinetics model. Two different burst discharge modes with five and ten pulses per burst are studied, both with a burst repetition rate of 50 Hz. In both cases, dynamics of OH and H_{2}O_{2 } distributions in the afterglow of the discharge are investigated. Gas temperatures determined from the OH-LIF spectra indicate that gas heating due to the plasma is insignificant. The addition of 5% O_{2 } in the He admixture decreases the OH densities and increases the H_{2}O_{2 }densities. The increased coupled energy in the ten-pulse discharge increases OH and H_{2}O_{2 } mole fractions, except for the H_{2}O_{2 } in the He–H_{2}O–O_{2 }mixture which is relatively insensitive to the additional pulses.

Cesium vapor thermionic converters are an attractive method of converting high-temperature heat directly to electricity, but theoretical descriptions of the systems have been difficult due to the multi-step ionization of Cs through inelastic electron–neutral collisions. This work presents particle-in-cell simulations of these converters, using a direct simulation Monte Carlo collision model to track 52 excited states of Cs. Here, these simulations show the dominant role of multi-step ionization, which also varies significantly based on both the applied voltage bias and pressure. The electron energy distribution functions are shown to be highly non-Maxwellian in the cases analyzed here. A comparison with previous approaches is presented, and large differences are found in ionization rates due especially to the fact that previous approaches have assumed Maxwellian electron distributions. Finally, an open question regarding the nature of the plasma sheaths in the obstructed regime is discussed. The one-dimensional simulations did not produce stable obstructed regime operation and thereby do not support the double-sheath hypothesis.

Partitioned methods allow one to build a simulation capability for coupled problems by reusing existing single-component codes. In so doing, partitioned methods can shorten code development and validation times for multiphysics and multiscale applications. In this work, we consider a scenario in which one or more of the “codes” being coupled are projection-based reduced order models (ROMs), introduced to lower the computational cost associated with a particular component. We simulate this scenario by considering a model interface problem that is discretized independently on two non-overlapping subdomains. Here we then formulate a partitioned scheme for this problem that allows the coupling between a ROM “code” for one of the subdomains with a finite element model (FEM) or ROM “code” for the other subdomain. The ROM “codes” are constructed by performing proper orthogonal decomposition (POD) on a snapshot ensemble to obtain a low-dimensional reduced order basis, followed by a Galerkin projection onto this basis. The ROM and/or FEM “codes” on each subdomain are then coupled using a Lagrange multiplier representing the interface flux. To partition the resulting monolithic problem, we first eliminate the flux through a dual Schur complement. Application of an explicit time integration scheme to the transformed monolithic problem decouples the subdomain equations, allowing their independent solution for the next time step. We show numerical results that demonstrate the proposed method’s efficacy in achieving both ROM-FEM and ROM-ROM coupling.

Experimental-analytical substructuring has been a popular field of research for several years and has seen many great advances for both frequency-based substructuring (FBS) and component mode synthesis (CMS) techniques. To examine these technical advances, a new benchmark structure has been designed through the SEM dynamic substructuring technical division to act as a benchmark study for anyone researching in the field. This work contains the first attempts at experimental dynamic substructuring using the new SEM testbed. Complete dynamic substructuring predictions will be presented along with an assessment of variability and nonlinear response in the testbed assembly. Systems will be available to check out through the authors beginning in December of 2021, and this paper intends to initiate in full the round-robin challenge.

Multiple Input Multiple Output (MIMO) vibration testing provides the capability to expose a system to a field environment in a laboratory setting, saving both time and money by mitigating the need to perform multiple and costly large-scale field tests. However, MIMO vibration test design is not straightforward oftentimes relying on engineering judgment and multiple test iterations to determine the proper selection of response Degree of Freedom (DOF) and input locations that yield a successful test. This work investigates two DOF selection techniques for MIMO vibration testing to assist with test design, an iterative algorithm introduced in previous work and an Optimal Experiment Design (OED) approach. The iterative-based approach downselects the control set by removing DOF that have the smallest impact on overall error given a target Cross Power Spectral Density matrix and laboratory Frequency Response Function (FRF) matrix. The Optimal Experiment Design (OED) approach is formulated with the laboratory FRF matrix as a convex optimization problem and solved with a gradient-based optimization algorithm that seeks a set of weighted measurement DOF that minimize a measure of model prediction uncertainty. The DOF selection approaches are used to design MIMO vibration tests using candidate finite element models and simulated target environments. The results are generalized and compared to exemplify the quality of the MIMO test using the selected DOF.

When exposed to mechanical environments such as shock and vibration, electrical connections may experience increased levels of contact resistance associated with the physical characteristics of the electrical interface. A phenomenon known as electrical chatter occurs when these vibrations are large enough to interrupt the electric signals. It is critical to understand the root causes behind these events because electrical chatter may result in unexpected performance or failure of the system. The root causes span a variety of fields, such as structural dynamics, contact mechanics, and tribology. Therefore, a wide range of analyses are required to fully explore the physical phenomenon. This paper intends to provide a better understanding of the relationship between structural dynamics and electrical chatter events. Specifically, electrical contact assembly composed of a cylindrical pin and bifurcated structure were studied using high fidelity simulations. Structural dynamic simulations will be performed with both linear and nonlinear reduced-order models (ROM) to replicate the relevant structural dynamics. Subsequent multi-physics simulations will be discussed to relate the contact mechanics associated with the dynamic interactions between the pin and receptacle to the chatter. Each simulation method was parametrized by data from a variety of dynamic experiments. Both structural dynamics and electrical continuity were observed in both the simulation and experimental approaches, so that the relationship between the two can be established.

Unlike traditional base excitation vibration qualification testing, multi-axis vibration testing methods can be significantly faster and more accurate. Here, a 12-shaker multiple-input/multiple-output (MIMO) test method called intrinsic connection excitation (ICE) is developed and assessed for use on an example aerospace component. In this study, the ICE technique utilizes 12 shakers, 1 for each boundary condition attachment degree of freedom to the component, specially designed fixtures, and MIMO control to provide an accurate set of loads and boundary conditions during the test. Acceleration, force, and voltage control provide insight into the viability of this testing method. System field test and ICE test results are compared to traditional single degree of freedom specification development and testing. Results indicate the multi-shaker ICE test provided a much more accurate replication of system field test response compared with single degree of freedom testing.

The Big Hill SPR site has a rich data set consisting of multi-arm caliper (MAC) logs collected from the cavern wells. This data set provides insight into the on-going casing deformation at the Big Hill site. This report summarizes the MAC surveys for each well and presents well longevity estimates where possible. Included in the report is an examination of the well twins for each cavern and a discussion on what may or may not be responsible for the different levels of deformation between some of the well twins. The report also takes a systematic view of the MAC data presenting spatial patterns of casing deformation and deformation orientation in an effort to better understand the underlying causes. The conclusions present a hypothesis suggesting the small-scale variations in casing deformation are attributable to similar scale variations in the character of the salt-caprock interface. These variations do not appear directly related to shear zones or faults.

Visualization of mode shapes is a crucial step in modal analysis. However, the methods to create the test geometry, which typically require arduous hand measurements and approximations of rotation matrices, are crude. This leads to a lengthy test set-up process and a test geometry with potentially high measurement errors. Test and analysis delays can also be experienced if the orientation of an accelerometer is documented incorrectly, which happens more often than engineers would like to admit. To mitigate these issues, a methodology has been created to generate the test geometry (coordinates and rotation matrices) with probe data from a portable coordinate measurement machine (PCMM). This methodology has led to significant reductions in the test geometry measurement time, reductions in test geometry measurement errors, and even reduced test times. Simultaneously, a methodology has also been created to use the PCMM to easily identify desired measurement locations, as specified by a model. This paper will discuss the general framework of these methods and the realized benefits, using examples from actual tests.

Resonant plate and other resonant fixture shock techniques were developed in the 1980s at Sandia National Laboratories as flexible methods to simulate mid-field pyroshock for component qualification. Since that time, many high severity shocks have been specified that take considerable time and expertise to setup and validate. To aid in test setup and to verify the shock test is providing the intended shock loading, it is useful to visualize the resonant motion of the test hardware. Experimental modal analysis is a valuable tool for structural dynamics visualization and model validation. This chapter describes a method to perform experimental modal testing at pyroshock excitation levels, utilizing input forces calculated via the SWAT-TEEM (Sum of Weighted Accelerations Technique—Time Eliminated Elastic Motion) method and the measured acceleration responses. The calculated input force and the measured acceleration data are processed to estimate natural frequencies, damping, and scaled mode shapes of a resonant plate test system. The modal properties estimated from the pyroshock-level test environment are compared to a traditional low-level modal test. The differences between the two modal tests are examined to determine the nonlinearity of the resonant plate test system.

We study both conforming and non-conforming versions of the practical DPG method for the convection-reaction problem. We determine that the most common approach for DPG stability analysis - construction of a local Fortin operator - is infeasible for the convection-reaction problem. We then develop a line of argument based on a direct proof of discrete stability; we find that employing a polynomial enrichment for the test space does not suffice for this purpose, motivating the introduction of a (two-element) subgrid mesh. The argument combines mathematical analysis with numerical experiments.

Measures of simulation model complexity generally focus on outputs; we propose measuring the complexity of a model’s causal structure to gain insight into its fundamental character. This article introduces tools for measuring causal complexity. First, we introduce a method for developing a model’s causal structure diagram, which characterises the causal interactions present in the code. Causal structure diagrams facilitate comparison of simulation models, including those from different paradigms. Next, we develop metrics for evaluating a model’s causal complexity using its causal structure diagram. We discuss cyclomatic complexity as a measure of the intricacy of causal structure and introduce two new metrics that incorporate the concept of feedback, a fundamental component of causal structure. The first new metric introduced here is feedback density, a measure of the cycle-based interconnectedness of causal structure. The second metric combines cyclomatic complexity and feedback density into a comprehensive causal complexity measure. Finally, we demonstrate these complexity metrics on simulation models from multiple paradigms and discuss potential uses and interpretations. These tools enable direct comparison of models across paradigms and provide a mechanism for measuring and discussing complexity based on a model’s fundamental assumptions and design.

While research in multiple-input/multiple-output (MIMO) random vibration testing techniques, control methods, and test design has been increasing in recent years, research into specifications for these types of tests has not kept pace. This is perhaps due to the very particular requirement for most MIMO random vibration control specifications – they must be narrowband, fully populated cross-power spectral density matrices. This requirement puts constraints on the specification derivation process and restricts the application of many of the traditional techniques used to define single-axis random vibration specifications, such as averaging or straight-lining. This requirement also restricts the applicability of MIMO testing by requiring a very specific and rich field test data set to serve as the basis for the MIMO test specification. Here, frequency-warping and channel averaging techniques are proposed to soften the requirements for MIMO specifications with the goal of expanding the applicability of MIMO random vibration testing and enabling tests to be run in the absence of the necessary field test data.

Bayesian inference is a technique that researchers have recently employed to solve inverse problems in structural dynamics and acoustics. More specifically, this technique can identify the spatial correlation of a distributed set of pressure loads generated during vibroacoustic testing. In this context, Bayesian inference augments the experimenter’s prior knowledge of the acoustic field prior to testing with vibration measurements at several locations on the test article to update these pressure correlations. One method to incorporate prior knowledge is to use a theoretical form of the correlations; however, theoretical forms only exist for a few special cases, e.g., a diffuse field or uncorrelated pressures. For more complex loading scenarios, such as those arising in a direct-field acoustic test, utilizing one of these theoretical priors may not be able to accurately reproduce the acoustic loading generated during the experiment. As such, this work leverages the pressure correlations generated from an acoustic simulation as the Bayesian prior to increase the accuracy of the inference for complex loading scenarios.

Piezoelectric stack actuators can convert an electrical stimulus into a mechanical displacement, which facilitates their use as a vibration-excitation mechanism for modal and vibration testing. Due to their compact nature, they are especially suitable for applications where typical electrodynamic shakers may not be physically feasible, e.g., on small-scale centrifuge/vibration (vibrafuge) testbeds. As such, this work details an approach to extract modal parameters using a distributed set of stack actuators incorporated into a vibrafuge system to provide the mechanical inputs. A derivation that considers a lumped-parameter stack actuator model shows that the transfer functions relating the mechanical responses to the piezoelectric voltages are in a similar form to conventional transfer functions relating the mechanical responses to mechanical forces, which enables typical curve-fitting algorithms to extract the modal parameters. An experimental application consisted of extracting modal parameters from a simple research structure on the centrifuge’s arm excited by the vibrafuge’s stack actuators. A modal test that utilized a modal hammer on the same structure with the centrifuge arm stationary produced similar modal parameters as the modal parameters extracted from the combined-environments testing with low-level inertial loading.

Reactive classical molecular dynamics simulations of sodium silicate glasses, xNa2O–(100 − x)SiO2 (x = 10–30), under quasi-static loading, were performed for the analysis of molecular scale fracture mechanisms. Mechanical properties of the sodium silicate glasses were consistent with experimentally reported values, and the amount of crack propagation varied with reported fracture toughness values. The most crack propagation occurred in NS20 systems (20-mol% Na2O) compared with the other simulated compositions. Dissipation via two mechanisms, the first through sodium migration as a lower activation energy process and the second through structural rearrangement as a higher activation energy process, was calculated and accounted for the energy that was not stored elastically or associated with the formation of new fracture surfaces. A correlation between crack propagation and energy dissipation was identified, with systems with higher crack propagation exhibiting less energy dissipation. Sodium silicate glass compositions with lower energy dissipation also exhibited the most sodium movement and structural rearrangement within 10 Å of the crack tip during loading. Therefore, high sodium mobility near the crack tip may enable energy dissipation without requiring formation of structural defects. Therefore, the varying mobilities of the network modifiers near crack tips influence the brittleness and the crack growth rate of modified amorphous oxide systems.