Publications

8 Results

Search results

Jump to search filters

Dynamic Shear and Normal Force Detection in a Soft Insole Using Hybrid Optical & Piezoresistive Sensors

Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics

Mcarthur, Daniel; Branyan, Callie A.; Tansel, Derya Z.; Liu, Eric V.; Mazumdar, Anirban; Miera, Alexandria; Rittikaidachar, Michal; Spencer, Steven J.; Wood, David; Wheeler, Jason

The development of multi-axis force sensing ca-pabilities in elastomeric materials has enabled new types of human motion measurement with many potential applications. In this work, we present a new soft insole that enables mobile measurement of ground reaction forces (GRFs) outside of a lab-oratory setting. This insole is based on hybrid shear and normal force detecting (SAND) tactile elements (taxels) consisting of optical sensors optimized for shear sensing and piezoresistive pressure sensors dedicated to normal force measurement. We develop polynomial regression and deep neural network (DNN) GRF prediction models and compare their performance to ground-truth force plate data during two walking experiments. Utilizing a 4-layer DNN, we demonstrate accurate prediction of the anterior-posterior (AP), medial-lateral (ML) and vertical components of the GRF with normalized mean absolute errors (NMAE) of <5.1 %, 4.1 %, and 4.5%, respectively. We also demonstrate the durability of the hybrid SAND insole construction through more than 20,000 cycles of use.

More Details

No tImplementing transition--edge sensors in a tabletop edge sensors in a tabletop xx--ray CT system for imaging applicationsray CT system for imaging applicationsitle

Alpert, Bradley; Becker, Daniel; Bennett, Douglas; Doriese, W.; Durkin, Malcolm; Fowler, Joseph; Gard, Johnathon; Imrek, Jozsef; Levine, Zachary; Mates, John; Miaja-Avila, Luis; Morgan, Kelsey; Nakamura, Nathan; O'Neil, Galen; Ortiz, Nathan; Reintsema, Carl; Schmidt, Daniel; Swetz, Daniel; Szypryt, Paul; Ullom, Joel; Vale, Leila; Weber, Joel; Wessels, Abigail; Dagel, Amber; Dalton, Gabriella; Foulk, James W.; Jimenez, Edward S.; Mcarthur, Daniel; Thompson, Kyle; Walker, Christopher; Wheeler, Jason; Ablerto, Julien; Griveau, Damien; Silvent, Jeremie

Abstract not provided.

Passivity Analysis of Quadrotor Aircraft for Physical Interactions

AIRPHARO 2021 - 1st AIRPHARO Workshop on Aerial Robotic Systems Physically Interacting with the Environment

Slightam, Jonathon E.; Mcarthur, Daniel; Spencer, Steven J.; Buerger, Stephen P.

The broad dissemination of unmanned aerial vehicles (UAV s), specifically quadrotor aircraft, has accelerated their successful use in a wide range of industrial, military, and agricultural applications. Research in the growing field of aerial manipulation (AM) faces many challenges but may enable the next generation of UAV applications. The physical contact required to perform AM tasks results in dynamic coupling with the environment, which may lead to instability with devastating consequences for a UAV in flight. Considering these concerns, this work seeks to determine whether off-the-shelf flight controllers for quadrotor UAV s are suitable for AM applications by investigating the passivity and coupled-stability of quad rotors using generic cascaded position-attitude (CPA) and PX4 flight controllers. Using a planar 3-degree of freedom (DOF) linearized state-space model and two high fidelity 6-DOF models with the CPA and PX4 closed-loop flight controllers, passivity is analyzed during free flight, and stability is analyzed when the UAV is coupled to environments with varying degrees of stiffness. This analysis indicates that quadrotors using the CPA and PX4 flight controllers are non-passive (except for the PX4 controller in the vertical direction with certain vehicle parameters) and may become unstable when the UAV is coupled with environments of certain stiffnesses. Similarities between the results from the linearized 3-DOF model and nonlinear 6-DOF models in the passivity analysis suggest that using an analytical, linear approach is sufficient and potentially useful for vehicle geometry and controller design to improve stability for AM applications.

More Details
8 Results
8 Results