Enabling Rechargeable Conversion Cathodes by Modeling the Coupling Between Structure, Electrochemistry, & Mechanics
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of the American Ceramic Society
Effective diversion of surge currents is vital to prevent unwanted damage to sensitive electronics. Among the most successful and efficient strategies relies on a dielectric stimulated arc breakdown mechanism with high permittivity ceramic granules in a spark-gap geometry. Although generally regarded as a self-healing process, substantial energy deposition may occur that, over time, diminishes the ability to withstand repeated electrical assaults. We investigate the susceptibility of lead–magnesium–niobate–lead titanate (PMN–PT) granule microstructure and composition changes following many exposures to high voltage impulses resulting in arc breakdown. Scanning electron microscopy and energy-dispersive spectroscopy mapping reveal a broad range of thermal and mechanical defects entailing thermal reduction of constituent PMN–PT metal ions and recasting due to rapid eruption of volatile species. Additionally, evidence of local melting and microcracking are apparent that can have deleterious impact on the proper function of the granules, namely, the ability to concentrate electric fields across air gaps to establish and sustain discharge pathways. We propose that the localized nature of damage and stochasticity associated with the dielectric stimulated breakdown mechanism may allow granules to maintain functionality provided no permanent conduction paths are established.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Accurate measurements of the arrival times of seismic waves are crucial for seismological analyses such as robust locations of earthquakes, characterization of seismic sources, and high-fidelity imaging of the Earth’s interior. However, these travel-time measurements can sometimes be contaminated by timing errors at the stations which record this data. In this study, we apply a classical approach, based on identifying time-dependence in measured body wave arrival times, to identify these timing errors in a dataset on the order of 107 individual measurements. We find timing deviations at a subset of the stations in our dataset and document the temporal location, extent, and severity of these errors, finding errors at 83 stations, and impacting ~100,000 measurements. This catalog of deviations may enable future investigators to obtain a more accurate dataset through the implementation of quality control measures to eliminate the contaminated data we have identified.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The Sandia National Laboratories, in California (SNL/CA) is a research and development facility, owned by the U.S. Department of Energy’s National Nuclear Security Administration agency (DOE/NNSA). The laboratory is located in the City of Livermore (the City) and is comprised of approximately 410 acres. The SNL/CA facility is operated by National Technology and Engineering Solutions of Sandia, LLC (NTESS) under a contract with the DOE/NNSA. The DOE/ NNSA’s Sandia Field Office (SFO) oversees the operations of the site. North of the SNL/CA facility is the Lawrence Livermore National Laboratory (LLNL), in which SNL/CA’s sewer system combines with before discharging to the City’s Publicly Owned Treatment Works (POTW) for final treatment and processing. The City’s POTW authorizes the wastewater discharge from SNL/CA via the assigned Wastewater Discharge Permit #1251 (the Permit), which is issued to the DOE/NNSA’s main office for Sandia National Laboratories, located in New Mexico (SNL/NM). The Monitoring and Reporting Condition 2.B of the Permit requires compliance with the semiannual reporting requirements contained in federal categorical pretreatment standards regulations (40 CFR 403.12). These regulations set numerical limits on the concentration of pollutants allowed to discharge from certain categories of industrial processes. This report is submitted to the City to satisfy this reporting requirement.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
AIP Advances
The notion of plane shock waves is a macroscopic, very fruitful idealization of near discontinuous disturbance propagating at supersonic speed. Such a picture is comparable to the picture of shorelines seen from a very high altitude. When viewed at the grain scale where the structure of solids is inherently heterogeneous and stochastic, features of shock waves are non-laminar and field variables, such as particle velocity and pressure, fluctuate. This paper reviews select aspects of such fluctuating nonequilibrium features of plane shock waves in solids with focus on grain scale phenomena and raises the need for a paradigm change to achieve a deeper understanding of plane shock waves in solids.
Abstract not provided.