Publications

Results 91801–92000 of 99,299

Search results

Jump to search filters

Bipolaron Hopping Conduction in Boron Carbides

Physica Status Solidi

Aselage, Terrence L.; Mccready, Steven S.

The electrical conductivities of boron carbides, B{sub 12+x}C{sub 3{minus}x} with 0.1 < x < 1.7, between 300 and 1200K suggest the hopping of a nearly temperature-independent density of small (bi)polarons. The activation energies of the nobilities are low, {approx} 0.16 eV, and are nearly independent of the composition. At lower temperatures, conductivities have non-Arrhenius temperature dependencies and strong sensitivity to carbon concentration. Percolative aspects of low-temperature hopping are evident in this sensitivity to composition. Boron carbides' Seebeck coefficients are anomalous in that (1) they are much larger than expected from boron carbides' large carrier densities and (2) they depend only weakly on the carrier density. Carrier-induced softening of local vibrations gives contributions to the Seebeck coefficient that mirror the magnitudes and temperature dependencies found in boron carbides.

More Details

Adaptive Spindle Balancing Using Magnetically Levitated Bearings

Barney, Patrick S.; Lauffer, James P.; Redmond, James M.; Sullivan, William N.

A technological break through for supporting rotating shafts is the active magnetic bearing (AMB). Active magnetic bearings offer some important advantages over conventional ball, roller or journal bearings such as reduced frictional drag, no physical contact in the bearing, no need for lubricants, compatibility with high vacuum and ultra-clean environments, and ability to control shaft position within the bearing. The disadvantages of the AMB system are the increased cost and complexity, reduced bearing stiffness and the need for a controller. Still, there are certain applications, such as high speed machining, biomedical devices, and gyroscopes, where the additional cost of an AMB system can be justified. The inherent actuator capabilities of the AMB offer the potential for active balancing of spindles and micro-shaping capabilities for machine tools, The work presented in this paper concentrates on an AMB test program that utilizes the actuator capability to dynamically balance a spindle. In this study, an unbalanced AMB spindle system was enhanced with an LMS (Least Mean Squares) algorithm combined with an existing PID (proportional, integral, differential) control. This enhanced controller significantly improved the concentricity of an intentionally unbalanced shaft. The study included dynamic system analysis, test validation, control design and simulation, as well as experimental implementation using a digital LMS controller.

More Details

Stress Voiding in IC Interconnects - Rules of Evidence for Failure Analysts

Electronic Device Failure Analysis News

Filter, William F.

Mention the words ''stress voiding'', and everyone from technology engineer to manager to customer is likely to cringe. This IC failure mechanism elicits fear because it is insidious, capricious, and difficult to identify and arrest. There are reasons to believe that a damascene-copper future might be void-free. Nevertheless, engineers who continue to produce ICs with Al-alloy interconnects, or who assess the reliability of legacy ICs with long service life, need up-to-date insights and techniques to deal with stress voiding problems. Stress voiding need not be fearful. Not always predictable, neither is it inevitable. On the contrary, stress voids are caused by specific, avoidable processing errors. Analytical work, though often painful, can identify these errors when stress voiding occurs, and vigilance in monitoring the improved process can keep it from recurring. In this article, they show that a methodical, forensics approach to failure analysis can solve suspected cases of stress voiding. This approach uses new techniques, and patiently applies familiar ones, to develop evidence meeting strict standards of proof.

More Details

Processing, Microstructure and Electric Properties of Buried Resistors in Low Temperature Co-Fired Ceramics

Journal of Applied Physics

Yang, Pin; Rodriguez, Mark A.; Kotula, Paul G.; Miera, B.K.; Dimos, Duane B.

The electrical properties were investigated for ruthenium oxide based devitrifiable resistors embedded within low temperature co-fired ceramics. Special attention was given to the processing conditions and their affects on resistance and temperature coefficient of resistance (TCR). Results indicate that the conductance for these buried resistors is limited by tunneling of charge carriers through the thin glass layer between ruthenium oxide particles. A modified version of the tunneling barrier model is proposed to more accurately account for the microstructure ripening observed during thermal processing. The model parameters determined from curve fitting show that charging energy (i.e., the energy required for a charge carrier to tunnel through the glass barrier) is strongly dependent on particle size and particle-particle separation between ruthenium oxide grains. Initial coarsening of ruthenium oxide grains was found to reduce the charging energy and lower the resistance. However, when extended ripening occurs, the increase in particle-particle separation increases the charging energy, reduces the tunneling probability and gives rise to a higher resistance. The trade-off between these two effects results an optimum microstructure with a minimum resistance and TCR. Furthermore, the TCR of these resistors has been shown to be governed by the magnitude of the charging energy. Model parameters determined by our analysis appear to provide quantitative physical interpretations to the microstructural change in the resistor, which in turn, are controlled by the processing conditions.

More Details

Fluoro-Carbonate Solvents for Li-Ion Cells

Nagasubramanian, Ganesan

A number of fluoro-carbonate solvents were evaluated as electrolytes for Li-ion cells. These solvents are fluorine analogs of the conventional electrolyte solvents such as dimethyl carbonate, ethylene carbonate, diethyl carbonate in Li-ion cells. Conductivity of single and mixed fluoro carbonate electrolytes containing 1 M LiPF{sub 6} was measured at different temperatures. These electrolytes did not freeze at -40 C. We are evaluating currently, the irreversible 1st cycle capacity loss in carbon anode in these electrolytes and the capacity loss will be compared to that in the conventional electrolytes. Voltage stability windows of the electrolytes were measured at room temperature and compared with that of the conventional electrolytes. The fluoro-carbon electrolytes appear to be more stable than the conventional electrolytes near Li voltage. Few preliminary electrochemical data of the fluoro-carbonate solvents in full cells are reported in the literature. For example, some of the fluorocarbonate solvents appear to have a wider voltage window than the conventional electrolyte solvents. For example, methyl 2,2,2 trifluoro ethyl carbonate containing 1 M LiPF{sub 6} electrolyte has a decomposition voltage exceeding 6 V vs. Li compared to <5 V for conventional electrolytes. The solvent also appears to be stable in contact with lithium at room temperature.

More Details

Thermal Stability of Li-Ion Cells

Roth, Emanuel P.

The thermal stability of Li-ion cells with intercalating carbon anodes and metal oxide cathodes was measured as a function of state of charge and temperature for two advanced cell chemistries. Cells of the 18650 design with Li{sub x}CoO{sub 2} cathodes (commercial SONY cells) and Li{sub x}Ni{sub 0.8}Co{sub 0.2}O{sub 2} cathodes were measured for thermal reactivity in the open circuit cell condition. Accelerating rate calorimetry (ARC) was used to measure cell thermal runaway as a function of state of charge (SOC). Microcalorimetry was used to measure the time dependence of heat generating side reactions also as a function of SOC. Components of cells were measured using differential scanning calorimetry (DSC) to study the thermal reactivity of the individual electrodes to determine the temperature regimes and conditions of the major thermal reactions. Thermal decomposition of the SEI layer at the anodes was identified as the initiating source for thermal runaway. The cells with Li{sub x}CoO{sub 2} cathodes showed greater sensitivity to SOC and higher accelerating heating rates than seen for the cells with Li{sub x}Ni{sub 0.8}Co{sub 0.2}O{sub 2}cathodes. Lower temperature reactions starting as low as 40 C were also observed that were SOC dependent but not accelerating. These reactions were also measured in the microcalorimeter and observed to decay over time with a power-law dependence and are believed to result in irreversible capacity loss in the cells.

More Details

Thermal Modeling of TIVA Profiles of a Polysilcon-Metal Test Structure

Journal of Applied Physics

Tangyunyong, Paiboon; Benson, D.A.; Colr, Edward I.

Thermal modeling and simulations were used to analyze the thermal profiles of a polysilicon-metal test structure generated by thermally-induced voltage alteration (TIVA), a new laser-based failure analysis technique to localize shorted interconnects. The results show that variations in TIVA thermal profiles are due mainly to preferential laser absorption in various locations in the test structure. Differences in oxide thickness also affect the local heat conduction and temperature distribution. Modeling results also show that local variation in heat conduction is less important than the absorbed laser power in determining the local temperatures since our test structure has feature sizes that are small compared to the length over which heat spreads.

More Details

Investigation of Sodium Distribution in Phosphate Glasses Using Spin-Echo {sup 23}Na NMR

Journal Physical Chemistry, B

Alam, Todd M.; Boyle, Timothy

The spatial arrangement of sodium cations for a series of sodium phosphate glasses, xNa{sub 2}O(100-x)P{sub 2}O{sub 5} (x<55), were investigated using {sup 23}Na spin-echo NMR spectroscopy. The spin-echo decay rate is a function of the Na-Na homonuclear dipolar coupling and is related to the spatial proximity of neighboring Na nuclei. The spin-echo decay rate in these sodium phosphate glasses increases non-linearly with higher sodium number density, and thus provides a measure of the Na-Na extended range order. The results of these {sup 23}Na NMR experiments are discussed within the context of several structural models, including a decimated crystal lattice model, cubic dilation lattice model, a hard sphere (HS) random distribution model and a pair-wise cluster hard sphere model. While the experimental {sup 23}Na spin-echo M{sub 2} are described adequately by both the decimated lattice and the random HS model, it is demonstrated that the slight non-linear behavior of M{sub 2} as a function of sodium number density is more correctly described by the random distribution in the HS model. At low sodium number densities the experimental M{sub 2} is inconsistent with models incorporating Na-Na clustering. The ability to distinguish between Na-Na clusters and non-clustered distributions becomes more difficult at higher sodium concentrations.

More Details

Coupled Resonator Vertical Cavity Laser Diode

Applied Physics Letters

Fischer, Arthur J.; Choquette, Kent D.; Chow, Weng W.; Hou, Hong Q.; Geib, Kent M.

We report the operation of an electrically injected monolithic coupled resonator vertical cavity laser which consists of an active cavity containing In{sub x}Ga{sub 1{minus}x}As quantum wells optically coupled to a passive GaAs cavity. This device demonstrates novel modulation characteristics arising from dynamic changes in the coupling between the active and passive cavities. A composite mode theory is used to model the output modulation of the coupled resonator vertical cavity laser. It is shown that the laser intensity can be modulated by either forward or reverse biasing the passive cavity. Under forward biasing, the modulation is due to carrier induced changes in the refractive index, while for reverse bias operation the modulation is caused by field dependent cavity enhanced absorption.

More Details

A Comparison of Kretschmann-Raether Angular Regimes for Measuring Changes in Bulk Refractive Index

Applied Optics

Hadley, G.R.

We compare 2 angular regimes for the measurement of changes in the real refractive index of bulk fluid analytes. The measurements are based on the use of the Kretschmann-Raether configuration to sense a change in reflectivity with index. Specifically, we numerically simulate the relative sensitivities of the total internal reflection (TIR) and surface-plasmon resonance (SPR) regimes. For a fixed-angle apparatus, the method which gives the greatest change in reflectivity varies with metal film thickness. For films thicker than the skin depth, the SPR regime is the most sensitive to index changes. For thinner films, however, the TIR angle is then dominant, with increases in sensitivity on the order of 75% for 10 nm gold or silver media.

More Details

Equivalent-Circuit Model for the Thickness-Shear Mode Resonator with a Viscoelastic Film Near Film Resonance

Analytical Chemistry

Martin, Steve W.; Bandey, Helen L.; Cernosek, Richard W.

We derive a lumped-element, equivalent-circuit model for the thickness shear mode (TSM) resonator with a viscoelastic film. This modified Butterworth-Van Dyke model includes in the motional branch a series LCR resonator, representing the quartz resonance, and a parallel LCR resonator, representing the film resonance. This model is valid in the vicinity of film resonance, which occurs when the acoustic phase shift across the film is an odd multiple of {pi}/2 radians. This model predicts accurately the frequency changes and damping that arise at resonance and is a reasonable approximation away from resonance. The elements of the model are explicitly related to film properties and can be interpreted in terms of elastic energy storage and viscous power dissipation. The model leads to a simple graphical interpretation of the coupling between the quartz and film resonances and facilitates understanding of the resulting responses. These responses are compared with predictions from the transmission-line and the Sauerbrey models.

More Details

A Concept for Zero-Alignment Micro Optical Systems

Shul, Randy J.; Willison, C.G.; Warren, Mial E.

We are developing a method of constructing compact, three-dimensional photonics systems consisting of optical elements, e.g., lenses and mirrors, photo-detectors, and light sources, e.g., VCSELS or circular-grating lasers. These optical components, both active and passive, are mounted on a lithographically prepared silicon substrate. We refer to the substrate as a micro-optical table (MOT) in analogy with the macroscopic version routinely used in optics laboratories. The MOT is a zero-alignment, microscopic optical-system concept. The position of each optical element relative to other optical elements on the MOT is determined in the layout of the MOT photomask. Each optical element fits into a slot etched in the silicon MOT. The slots are etched using a high-aspect-ratio silicon etching (HARSE) process. Additional positioning features in each slot's cross-section and complementary features on each optical element permit accurate placement of that element's aperture relative to the MOT substrate. In this paper we present the results of the first fabrication and micro-assembly experiments of a silicon-wafer based MOT. Based on these experiments, estimates of position accuracy are reported. We also report on progress in fabrication of lens elements in a hybrid sol-gel material (HSGM). Diffractive optical elements have been patterned in a 13-micron thick HSGM layer on a 150-micron thick soda-lime glass substrate. The measured ms surface roughness was 20 nm. Finally, we describe modeling of MOT systems using non-sequential ray tracing (NSRT).

More Details

Integrated Micro-Optical Fluorescence Detection System for Microfluidic Electrochromatography

Warren, Mial E.; Arnold, D.W.; Matzke, Carolyn M.; Sweatt, W.C.; Kemme, Shanalyn A.; Asbill, R.E.; Carter, Tony R.; Wendt, Joel R.; Samora, Sally; Allerman, A.A.; Bailey, C.G.

The authors describe the design and microfabrication of an extremely compact optical system as a key element in an integrated capillary-channel electrochromatograph with laser induced fluorescence detection. The optical design uses substrate-mode propagation within the fused silica substrate. The optical system includes a vertical cavity surface-emitting laser (VCSEL) array, two high performance microlenses and a commercial photodetector. The microlenses are multilevel diffractive optics patterned by electron beam lithography and etched by reactive ion etching in fused silica. Two generations of optical subsystems are described. The first generation design is integrated directly onto the capillary channel-containing substrate with a 6 mm separation between the VCSEL and photodetector. The second generation design separates the optical system onto its own module and the source to detector length is further compressed to 3.5 mm. The systems are designed for indirect fluorescence detection using infrared dyes. The first generation design has been tested with a 750 nm VCSEL exciting a 10{sup -4} M solution of CY-7 dye. The observed signal-to-noise ratio of better than 100:1 demonstrates that the background signal from scattered pump light is low despite the compact size of the optical system and meets the system sensitivity requirements.

More Details

Microfabricated Gas Phase Chemical Analysis Systems

Frye-Mason, Gregory C.; Manginell, Ronald; Heller, Edwin J.; Matzke, Carolyn M.; Casalnuovo, Stephen A.; Hietala, Vincent M.; Kottenstette, Richard J.; Lewis, Patrick R.; Wong, Chungnin C.

A portable, autonomous, hand-held chemical laboratory ({micro}ChemLab{trademark}) is being developed for trace detection (ppb) of chemical warfare (CW) agents and explosives in real-world environments containing high concentrations of interfering compounds. Microfabrication is utilized to provide miniature, low-power components that are characterized by rapid, sensitive and selective response. Sensitivity and selectivity are enhanced using two parallel analysis channels, each containing the sequential connection of a front-end sample collector/concentrator, a gas chromatographic (GC) separator, and a surface acoustic wave (SAW) detector. Component design and fabrication and system performance are described.

More Details

The Growth of InGaAsN for High Efficiency Solar Cells by Metalorganic Chemical Vapor Deposition

Allerman, A.A.; Kurtz, S.R.; Jones, Eric D.; Gee, James M.; Banks, James C.

InGaAsN alloys are a promising material for increasing the efficiency of multi-junction solar cells now used for satellite power systems. However, the growth of these dilute N containing alloys has been challenging with further improvements in material quality needed before the solar cell higher efficiencies are realized. Nitrogen/V ratios exceeding 0.981 resulted in lower N incorporation and poor surface morphologies. The growth rate was found to depend on not only the total group III transport for a fixed N/V ratio but also on the N/V ratio. Carbon tetrachloride and dimethylzinc were effective for p-type doping. Disilane was not an effective n-type dopant while SiCl4 did result in n-type material but only a narrow range of electron concentrations (2-5e17cm{sup -3}) were achieved.

More Details

Materials Applications for Non-Lethal: Aqueous Foams

Scott, Steven H.; Goolsby, Tommy D.W.

High expansion aqueous foam is an aggregation of bubbles that has the appearance of soap suds and is used to isolate individuals both visually and acoustically. It was developed in the 1920's in England to fight coal mine fires and has been widely used since for fire fighting and dust suppression. It was developed at Sandia National Laboratories (SNL) in the 1970's for nuclear safeguards and security applications. In the mid-1990s, the National Institute of Justice (NIJ), the research arm of the Department of Justice, began a project with SNL to determine the applicability of high expansion aqueous foam for correctional applications. NIJ funded the project as part of its search for new and better less-than-lethal weapons for responding to violent and dangerous individuals, where other means of force could lead to serious injuries. The phase one objectives of the project were to select a low-to-no toxicity foam concentrate (foaming agent) with physical characteristics suited for use in a single cell or large prison disturbances, and to determine if the selected foam concentrate could serve as a carrier for Oleoresin Capsicum (OC) irritant. The phase two objectives were to conduct an extensive toxicology review of the selected foam concentrate and OC irritant, and to conduct respiration simulation experiments in the selected high expansion aqueous foam. The phase three objectives were to build a prototype individual cell aqueous foam system and to study the feasibility of aqueous foams for large prison facility disturbances. The phase four and five objectives were to use the prototype system to do large scale foam physical characteristics testing of the selected foam concentrate, and to have the prototype single cell system further evaluated by correctional representatives. Prison rather than street scenarios were evaluated as the first and most likely place for using the aqueous foam since prisons have recurrent incidents where officers and inmates might be seriously injured during violent confrontations. The very low density of the high expansion foam also makes it more suitable for indoor use. This paper summarizes the results of the project.

More Details

New Insights into Fully-Depleted SOI Transistor Response During Total-Dose Irradiation

Schwank, James R.; Shaneyfelt, Marty R.; Dodd, Paul E.

Previous work showed the possible existence of a total-dose latch effect in fully-depleted SOI transistors that could severely limit the radiation hardness of SOI devices. Other work showed that worst-case bias configuration during irradiation was the transmission gate bias configuration. In this work we further explore the effects of total-dose ionizing irradiation on fully-depleted SOI transistors. Closed-geometry and standard transistors fabricated in two fully-depleted processes were irradiated with 10-keV x rays. Our results show no evidence for a total-dose latch effect as proposed by others. Instead, in absence of parasitic trench sidewall leakage, our data suggests that the increase in radiation-induced leakage current is caused by positive charge trapping in the buried oxide inverting the back-channel interface. At moderate levels of trapped charge, the back-channel interface is slightly inverted causing a small leakage current to flow. This leakage current is amplified to considerably higher levels by impact ionization. Because the back-channel interface is in weak inversion, the top-gate bias can modulate the back-channel interface and turn the leakage current off at large, negative voltage levels. At high levels of trapped charge, the back-channel interface is fully inverted and the gate bias has little effect on leakage current. However, it is likely that this current also is amplified by impact ionization. For these transistors, the worst-case bias configuration was determined to be the ''ON'' bias configuration. These results have important implication on hardness assurance.

More Details

Partnering at the National Laboratories: Catalysis as a Case Study

Jackson, Nancy B.

The role of the national laboratories, particularly the defense program laboratories, since the end of the cold war, has been a topic of continuing debate. The relationship of national laboratories to industry spurred debate which ranged from designating the labs as instrumental to maintaining U.S. economic competitiveness to concern over the perception of corporate welfare to questions regarding the industrial globalization and the possibility of U.S. taxpayer dollars supporting foreign entities. Less debated, but equally important, has been the national laboratories' potential competition with academia for federal research dollars and discussions detailing the role of each in the national research enterprise.

More Details

Optics in the Multipole Approximation: From Atomic Systems to Solids

Optics Communication

Chow, Weng W.

Starting from the microscopic light-matter interaction in form of the minimal coupling Hamiltonian, the multipole approximation for the optical response of localized electrons in atomic systems is extended to delocalized electrons in solids. A spatial averaging procedure is used to derive the electromagnetic sources for macroscopic Maxwell's equations as well as the corresponding many particle Hamiltonian on a coarse grained length scale. The results are illustrated for semiconductor bulk material up to quadruple moments for the interband transitions, where gauge invariant equations of motion for the optical response are obtained.

More Details

Mechanistic Feature-Scale Profile Simulation of SiO2LPCVD by TEOS Pyrolysis

Journal Vacuum Society Technology

Moffat, Harry K.

Simulation of chemical vapor deposition (CVD) in submicron features typical of semiconductor devices has been facilitated by extending the EVOLVE thin film etch and deposition simulation code to use thermal reaction mechanisms expressed in the Chemkin format. This allows consistent coupling between EVOLVE and reactor simulation codes that use Chemkin. In an application of a reactor-scale simulation code providing surface fluxes to a feature-scale simulation code, a proposed reaction mechanism for TEOS pyrolysis to deposit SiO{sub 2}, which had been applied successfully to reactor-scale simulation, is seen not to predict the low step coverage over trenches observed under short reactor residence time conditions. An apparent discrepancy between the mechanism and profile-evolution observations is a reduced degree of sensitivity of the deposition rate to the presence of reaction products, i.e., the byproduct inhibition effect is underpredicted. The cause of the proposed mechanism's insensitivity to byproduct inhibition is investigated with the combined reactor and topography simulators first by manipulating the surface to volume ratio of a simulated reactor and second by calibrating parameters in the proposed mechanism such as the calculated free energies of surface molecules. The conclusion is that the byproduct inhibition can not be enhanced to fit profile evolution data without comprising agreement with reactor scale data by simply adjusting mechanism parameters. Thus, additional surface reaction channels seem to be required to reproduce simultaneously experimental reactor-scale growth rates and experimental step coverages.

More Details

Phase Structure and Cyclic Deformation in Eutectic Tin-Lead Alloy: A Numerical Analysis

Journal of Electronic Packaging

Fang, H.E.

This study is devoted to providing a mechanistic rationale of coarsening induced failure in solder alloys during thermomechanical fatigue. Micromechanical modeling of cyclic deformation of eutectic tin-lead alloy was undertaken using the finite element method. The models consist of regularly arranged tin-rich and lead-rich phases, simulating the lamellar array and colony structure in a typical eutectic system. A fine structure and a coarse structure, bearing the same phase fraction but different in the aspect ratio of each lead-rich layer and in the number of lead-rich layers in each colony, are utilized for representing the microstructure before and after coarsening, respectively. Both phases are treated as elastic-plastic solids with their respective properties. For simplicity the creep effect is ignored without compromising the main objective of this study. Cyclic loading under pure shear and uniaxial conditions is modeled. It is found that both the fine and coarse structures exhibit essentially the same macroscopic stress-strain response. The coarse structure, however, shows a greater maximum effective plastic strain on a local scale throughout the deformation. The numerical result implies that, in a solder joint, a locally coarsened region may not be mechanically weaker than its surrounding, but it is subject to early damage initiation due to accumulated plasticity. Other implications regarding solder alloy failure and micromechanical modeling of two-phase materials are discussed.

More Details

Kinetics of Reactive Wetting

Scripta Materialia

Yost, Frederick G.

The importance of interfacial processes in materials joining has a long history. A significant amount of work has suggested that processes collateral to wetting can affect the extent of wetting and moderate or retard wetting rate. Even very small additions of a constituent, known to react with the substrate, cause pronounced improvement in wetting and are exploited in braze alloys, especially those used for joining to ceramics. The wide diversity of processes, such as diffusion, chemical reaction, and fluxing, and their possible combinations suggest that various rate laws should be expected for wetting kinetics depending on the controlling processes. These rate laws are expected to differ crucially from the standard fluid controlled wetting models found in the literature. Voitovitch et al. and Mortensen et al. have shown data that suggests diffusion control for some systems and reaction control for others. They also presented a model of wetting kinetics controlled by the diffusion of a constituent contained by the wetting fluid. In the following a model will be constructed for the wetting kinetics of a small droplet of metal containing a constituent that diffuses to the wetting line and chemically reacts with a flat, smooth substrate. The model is similar to that of Voitovitch et al. and Mortensen et al. but incorporates chemical reaction kinetics such that the result contains both diffusion and reaction kinetics. The model is constructed in the circular cylinder coordinate system, satisfies the diffusion equation under conditions of slow flow, and considers diffusion and reaction at the wetting line to be processes in series. This is done by solving the diffusion equation with proper initial and boundary conditions, computing the diffusive flux at the wetting line and equating this to both the convective flux and reaction flux. This procedure is similar to equating the current flowing in components of a series circuit. The wetting rate will be computed versus time for a variety of diffusion and reaction conditions. A transition is observed from nonlinear (diffusive) to linear (reactive) behavior as the control parameters (such as the diffusion coefficient) are modified. This is in agreement with experimental observations. The adequacy of the slow flow condition, used in this type of analysis, is discussed and an amended procedure is suggested.

More Details

Intranet Development and Design that Works

Baca, B.G.; Cassidy, Andrea L.

Making information available and easy to find is the objective of designing a good web site. A company's Intranet typically provides a great deal of information to its employees in an effort to help them better perform their jobs. If the information is available but is difficult to locate, the usefulness of this information is diminished. Sandia National Laboratories performed a redesign of its home page and has obtained a successful design which enables its employees to locate information quickly and efficiently. Three phases of usability testing were conducted to develop and optimize the home page. This paper will discuss the redesign of the Intranet home page and describe how usability studies were used to help ensure a usable design.

More Details

Increasing the Strength of Adhesively Bonded Joints by Tapering the Adherends

Metzinger, Kurt E.; Guess, Tommy R.

Wind turbine blades are often fabricated with composite materials. These composite blades are frequently attached to a metallic structure with an adhesive bond. For the baseline composite-to-steel joint considered in this study, failure typically occurs when the adhesive debonds from the steel adherend. Previous efforts established that the adhesive peel stresses strongly influence the strength of these joints for both single-cycle and fatigue loading. This study focused on reducing the adhesive peel stresses present in these joints by tapering the steel adherends. Several different tapers were evaluated using finite element analysis before arriving at a final design. To confirm that the selected taper was an improvement to the existing design, the baseline joint and the modified joint were tested in both compression and tension. In these axial tests, the compressive strengths of the joints with tapered adherends were greater than those of the baseline joints for both single-cycle and low-cycle fatigue. In addition, only a minor reduction in tensile strength was observed for the joints with tapered adherends when compared to the baseline joints. Thus, the modification would be expected to enhance the overall performance of this joint.

More Details

On the Connection Between the Discrete Dislocation Slip Model and the Orowan Equation

Journal of Applied Physics

Braginsky, Michael V.

Within the framework of thermodynamic theory of plasticity and specific structural-variables (associated with individual dislocations), a transition has been made to an expression containing one internal variable of the averaging type--the density of glissile dislocations, N{sub g}. This expression should be considered a tensorial generalization of the well-known Orowan's equation and relates it directly to the simplest possible case of normal flow in metallic materials. Since most metals display deviations from normality in the flow rule{sup 7} it also clearly indicates that more rigorous assessment of the relation between plastic strain rate and dislocation populations is required especially for materials displaying plastic instabilities in the form of dislocation patterning, strain-softening and strain-rate softening phenomena. The obtained result could be a useful starting point in establishing such rigorous macroscopic relations from microscopic considerations associated with individual dislocations and to find useful applications in dislocation density-related constitutive modeling of plastic deformation.

More Details

Evaluation of Fiber Separators for Use in Thermal Batteries

Guidotti, Ronald A.; Reinhardt, Frederick W.

Fiberglass tape and borosilicate filter discs impregnated with molten LiCl-KCl eutectic were examined for potential use as separators for high-temperature LiSi/LiCl-KCl/FeS{sub 2} thermal batteries. Test discs were punched from these materials and evaluated at 400 C in single cells at a steady-state current of 63 mA/cm{sup 2}. The performance generally improved with electrolyte loading for most of the materials. Better results were obtained with the filter discs than with the tape. The best overall results were obtained with Whatman GF/A discs. Active lives for cells with these separators were about 85% of the standard cells with pressed-powder separators. More work with other materials and electrolytes over a wider temperature range is underway, along with 5-cell-battery tests.

More Details

Electrochemical Evaluation of Thin-Film Li-Si Anodes Prepared by Plasma Spraying

Guidotti, Ronald A.; Scharrer, Gregory L.; Reinhardt, Frederick W.

Thin-film electrodes of a plasma-sprayed Li-Si alloy were evaluated for use as anodes in high-temperature thermally activated (thermal) batteries. These anodes were prepared using 44% Li/56% Si (w/w) material as feed material in a special plasma-spray apparatus under helium or hydrogen, to protect this air- and moisture-sensitive material during deposition. Anodes were tested in single cells using conventional pressed-powder separators and lithiated pyrite cathodes at temperatures of 400 to 550 C at several different current densities. A limited number of 5-cell battery tests were also conducted. The data for the plasma-sprayed anodes was compared to that for conventional pressed-powder anodes. The performance of the plasma-sprayed anodes was inferior to that of conventional pressed-powder anodes, in that the cell emfs were lower (due to the lack of formation of the desired alloy phases) and the small porosity of these materials severely limited their rate capability. Consequently, plasma-sprayed Li-Si anodes would not be practical for use in thermal batteries.

More Details

X-Ray Characterization of Resistor/Dielectric Material for Low Temperature Co-Fired Ceramic Packages

Rodriguez, Mark A.; Yang, Pin; Kotula, Paul G.; Dimos, Duane B.

High temperature XRD has been employed to monitor the devitrification of Dupont 951 low temperature co-fired ceramic (LTCC) and Dupont E84005 resistor ink. The LTCC underwent devitrification to an anorthite phase in the range of 835-875 C with activation energy of 180 kJ/mol as calculated from kinetic data. The resistor paste underwent devitrification in the 835-875 C range forming monoclinic and hexagonal celcian phases plus a phase believed to be a zinc-silicate. RuO{sub 2} appeared to be stable within this devitrified resistor matrix. X-ray radiography of a co-fired circuit indicated good structural/chemical compatibility between the resistor and LTCC.

More Details

Stabilization of Colloidal Silica Using Small Polyols

Journal of Colloid and Interface Science

Gulley, Gerald L.; Martin, James E.

We have discovered that small polyols are reasonably effective at stabilizing colloidal silica against aggregation, even under the conditions of high pH and salt concentration. Both quasielastic and elastic light scattering were used to show that these polyols dramatically decrease the aggregation rate of the suspension, changing the growth kinetics from diffusion-limited cluster-cluster aggregation to reaction-limited cluster-cluster aggregation. These polyols maybe useful in the treatment of tank wastes at the Hanford site.

More Details

Interval Assignment for Volumes with Holes

Internatioanl Journal of Numerical Methods in Engineering

Shepherd, Jason F.; Mitchell, Scott A.

This paper presents a new technique for automatically detecting interval constraints for swept volumes with holes. The technique finds true volume constraints that are not necessarily imposed by the surfaces of the volume. A graphing algorithm finds independent, parallel paths of edges from source surfaces to target surfaces. The number of intervals on two paths between a given source and target surface must be equal; in general, the collection of paths determine a set of linear constraints. Linear programming techniques solve the interval assignment problem for the surface and volume constraints simultaneously.

More Details

Austenite Formation Kinetics During Rapid Heating in a Microalloyed Steel

Puskar, J.D.; Dykhuizen, Ronald C.; Robino, Charles V.; Kelley, John B.

The model parameters for the normalized 1054V1 material were compared to parameters previously generated for 1026 steel, and the transformation behavior was relatively consistent. Validation of the model predictions by heating into the austenite plus undissolved ferrite phase field and rapidly quenching resulted in reasonable predictions when compared to the measured volume fractions from optical metallography. The hot rolled 1054V1 material, which had a much coarser grain size and a non-equilibrium volume fraction of pearlite, had significantly different model parameters and the on heating transformation behavior of this material was less predictable with the established model. The differences in behavior is consistent with conventional wisdom that normalized micro-structure produce a more consistent response to processing, and it reinforces the need for additional work in this area.

More Details

Integratible Process for Fabrication of Fluidic Microduct Networks on a Single Wafer

Matzke, Carolyn M.; Ashby, Carol I.H.; Manginell, Monica; Griego, Leonardo; Wong, Chungnin C.

We present a microelectronics fabrication compatible process that comprises photolithography and a key room temperature SiON thin film plasma deposition to define and seal a fluidic microduct network. Our single wafer process is independent of thermo-mechanical material properties, particulate cleaning, global flatness, assembly alignment, and glue medium application, which are crucial for wafer fusion bonding or sealing techniques using a glue medium. From our preliminary experiments, we have identified a processing window to fabricate channels on silicon, glass and quartz substrates. Channels with a radius of curvature between 8 and 50 {micro}m, are uniform along channel lengths of several inches and repeatable across the wafer surfaces. To further develop this technology, we have begun characterizing the SiON film properties such as elastic modulus using nanoindentation, and chemical bonding compatibility with other microelectronic materials.

More Details

Perspective of the Science Advisor to the Waste Isolation Pilot Plant

Weart, Wendell D.

In 1975 Sandia National Laboratories (SNL) was asked by the predecessor to the Department of Energy to assume responsibility for the scientific programs necessary to assure the safe and satisfactory development of a geologic repository in the salt beds of southeast New Mexico. Sandia has continued in the role of Science Advisor to the Waste Isolation Pilot Plant (WIPP) to the present time. This paper will share the perspectives developed over the past 25 years as the project was brought to fruition with successful certification by the Environmental Protection Agency (EPA) on May 13, 1998 and commencement of operations on April 26, 1999.

More Details

Sensitivity Variation on Low Cycle Fatigue Cracks Using Level 4/Method B Penetrant

Moore, David G.

The Federal Aviation Administration's Airworthiness Assurance NDI Validation Center (AANC) is currently conducting experiments with Level 4, Method B penetrant on low cycle fatigue specimens. The main focus of these experiments is to document the affect on penetrant brightness readings by varying inspection parameters. This paper discusses the results of changing drying temperature, drying time, and dwell time of both penetrant and emulsifier on low cycle fatigue specimens.

More Details

Phase Encoding of Shots in Pre-Stack Seismic Migration

Journal of Geophysics

Ober, Curtis C.; Romero, Louis

Frequency-domain shot-record migration can produce higher quality images than Kirchhoff migration but typically at a greater cost. The computational cost of shot-record migration is the product of the number of shots in the survey and the expense of each individual migration. Many attempts to reduce this cost have focused on the speed of the individual migrations, trying to achieve a better trade-off between accuracy and speed. Another approach is to reduce the number of migrations. We investigate the simultaneous migration of shot records using frequency-domain shot-record migration algorithms. The difficulty with this approach is the production of so-called cross terms between unrelated shot and receiver wavefields, which generate unwanted artifacts or noise in the final image. To reduce these artifacts and obtain an image comparable in quality to the single-shot-per-migration result, we have introduced a process called phase encoding which shifts or disperses these cross terms. The process of phase encoding thus allows one to trade signal-to-noise ratio for the speed of migrating the entire survey. Several encoding functions and two application strategies have been tested. The first strategy, combining multiple shots per migration and using each shot only once, provides a reduction in computation directly related to the number of shots combined. The second strategy, performing multiple migrations of all the shots in the survey, provides a means to reduce the cross-term noise through stacking the resulting images. The additional noise in both strategies may be tolerated if it is no stronger than the inherent seismic noise in the migrated image, and if the final image is achieved with less cost.

More Details

Corrosion of Uranium in Desert Soil, with Application to GCD Source Term M

Krumhansl, James L.; Stockman, Harlan W.; Anderson, Howard L.

Uranium fragments from the Sandia Sled Track were studied as analogues for weapons components and depleted uranium buried at the Greater Confinement Disposal (GCD) site in Nevada. The Sled Track uranium fragments originated as weapons mockups and counterweights impacted on concrete and soil barriers, and experienced heating and fragmentation similar to processes thought to affect the Nuclear Weapons Accident Residues (NWAR) at GCD. Furthermore, the Sandia uranium was buried in unsaturated desert soils for 10 to 40 years, and has undergone weathering processes expected to affect the GCD wastes. Scanning electron microscopy, X-ray diffraction and microprobe analyses of the fragments show rapid alteration from metals to dominantly VI-valent oxy-hydroxides. Leaching studies of the samples give results consistent with published U-oxide dissolution rates, and suggest longer experimental periods (ca. 1 year) would be required to reach equilibrium solution concentrations. Thermochemical modeling with the EQ3/6 code indicates that the uranium concentrations in solutions saturated with becquerelite could increase as the pore waters evaporate, due to changes in carbonate equilibria and increased ionic strength.

More Details

Sandia National Laboratories/New Mexico Environmental Information Document - Volume II

Guerrero, Joseph V.; Kuzio, Kenneth A.

This Sandia National Laboratories/New Mexico Environmental Information Document (EID) compiles information on the existing environment, or environmental baseline, for SNUNM. Much of the information is drawn from existing reports and databases supplemented by new research and data. The SNL/NM EID, together with the Sandia National Laboratories/New Mexico Facilities and Safety Information Document, provide a basis for assessing the environment, safety, and health aspects of operating selected facilities at SNL/NM. The environmental baseline provides a record of the existing physical, biological, and socioeconomic environment at SNL/NLM prior to being altered (beneficially or adversely) by proposed programs or projects. More specifically, the EID provides information on the following topics: Geology; Land Use; Hydrology and Water Resources; Air Quality and Meteorology; Ecology; Noise and Vibration; Cultural Resources; Visual Resources; Socioeconomic and Community Services; Transportation; Material Management; Waste Management; and Regulatory Requirements.

More Details

1998 Annual Site Environmental Report Sandia National Laboratories, Albuquerque, New Mexico

Murray, Dianne K.; Fink, Charles H.; Sanchez, Rebecca V.

Sandia National Laboratories/New Mexico (SNL/NM) is operated in support of the US Department of Energy (DOE) mission to provide weapon component technology and hardware for national security needs. SNL/NM also conducts fundamental research and development to advance technology in energy research, computer science, waste management, microelectronics, materials science, and transportation safety for hazardous and nuclear components. In support of SNL's mission, the Environment, Safety and Health (ES&H) Center and the Environmental Restoration (ER) Project at SNL/NM have established extensive environmental programs to assist SNL's line organizations in meeting all applicable local, State, and Federal environmental regulations and DOE requirements. This annual report for calendar year 1998 (CY98) summarizes the compliance status of environmental regulations applicable to SNL site operations. Environmental program activities include terrestrial surveillance; ambient air and meteorological monitoring hazardous, radioactive, and solid waste management; pollution prevention and waste minimization; environmental remediation; oil and chemical spill prevention; and National Environmental Policy Act (NEPA) activities. This report has been prepared in compliance with DOE Order 5400.1, General Environmental Protection Program (DOE 1990).

More Details

1998 Annual Site Environmental Report Tonopah Test Range, Nevada

Murray, Dianne K.; Fink, Charles H.; Sanchez, Rebecca V.

Sandia National Laboratories (SNL) operates the Tonopah Test Range (TTR) for the Department of Energy (DOE) Weapons Ordnance Program. This annual report (calendar year 1998) summarizes the compliance status to environmental regulations applicable at the site including those statutes that govern air and water quality, waste management cleanup of contaminated areas, control of toxic substances, and adherence to requirements as related to the National Environmental Policy Act (NEPA). In compliance with DOE orders, SNL also conducts environmental surveillance for radiological and nonradiological contaminants. SNL's responsibility for environmental surveillance at TTR extends only to those areas where SNL activities are carried out. Annual radiological and nonradiological routine releases and unplanned releases (occurrences) are also summarized. This report has been prepared in accordance with DOE Order 5400.1, General Environmental Protection Program (DOE 1990a).

More Details

Multimechanism-Deformation Parameters of Domal Salts Using Transient Creep Analysis

Munson, Darrell E.

Use of Gulf Coast salt domes for construction of very large storage caverns by solution mining has grown significantly in the last several decades. In fact, among the largest developers of storage caverns along the Gulf Coast is the Strategic Petroleum Reserve (SPR) which has purchased or constructed 62 crude oil storage caverns in four storage sites (domes). Although SPR and commercial caverns have been operated economically for many years, the caverns still exhibit some relatively poorly understood behaviors, especially involving creep closure volume loss and hanging string damage from salt falls. Since it is possible to postulate that some of these behaviors stem from geomechanical or reformational aspects of the salt, a method of correlating the cavern response to mechanical creep behavior as determined in the laboratory could be of considerable value. Recently, detailed study of the creep response of domal salts has cast some insight into the influence of different salt origins on cavern behavior. The study used a simple graphical analysis of limited non-steady state data to establish an approach or bound to steady state, as an estimate of the steady state behavior of a given salt. This permitted analysis of sparse creep databases for domal salts. It appears that a shortcoming of this steady state analysis method is that it obscures some critical differences of the salt material behavior. In an attempt to overcome the steady state analysis shortcomings, a method was developed based on integration of the Multimechanism-Deformation (M-D) creep constitutive model to obtain fits to the transient response. This integration process permits definition of all the material sensitive parameters of the model, while those parameters that are constants or material insensitive parameters are fixed independently. The transient analysis method has proven more sensitive to differences in the creep characteristics and has provided a way of defining different behaviors within a given dome. Characteristics defined by the transient analysis are related quantitatively to the volume loss creep rate of the SPR caverns. This increase in understanding of the domal material creep response already has pointed to the possibility y of delineating the existence of material spines within a specific dome. Further definition of the domal geology and structure seems possible only through expansion of the creep databases for domal salts.

More Details

Lessons Learned from the Puerto Rico Battery Energy Storage System

Boyes, John D.

The Puerto Rico Electric Power Authority (PREPA) installed a distributed battery energy storage system in 1994 at a substation near San Juan, Puerto Rico. It was patterned after two other large energy storage systems operated by electric utilities in California and Germany. The U.S. Department of Energy (DOE) Energy Storage Systems Program at Sandia National Laboratories has followed the progress of all stages of the project since its inception. It directly supported the critical battery room cooling system design by conducting laboratory thermal testing of a scale model of the battery under simulated operating conditions. The Puerto Rico facility is at present the largest operating battery storage system in the world and is successfully providing frequency control, voltage regulation, and spinning reserve to the Caribbean island. The system further proved its usefulness to the PREPA network in the fall of 1998 in the aftermath of Hurricane Georges. The owner-operator, PREPA, and the architect/engineer, vendors, and contractors learned many valuable lessons during all phases of project development and operation. In documenting these lessons, this report will help PREPA and other utilities in planning to build large energy storage systems.

More Details

Dynamics of Methane Trapped in C(60) Interstices

Journal of Chemical Physics

Morosin, Bruno W.

In order to understand the hindered rotational and vibrational dynamics of methane trapped in C{sub 60} interstices and to determine the structure around the interstitial site, they have carried out inelastic neutron scattering studies of the methane/C{sub 60} system. At temperatures of 20K and below, they observe inelastic peaks from rotational transitions of the CH{sub 4}. These transitions allow unambiguous assignment of the hindered rotational energy levels and a determination of the interaction potential. The appearance of two peaks for one of the J = 0{r_arrow}3 transitions implies the existence of two distinct kinds of interstitial sites and the measured transition energies suggest a rotational barrier of about 26 and 16 meV for these sites. Time-dependent changes in peak heights indicate slow t{sub 1/2} ({approx} 2.6 hrs) triplet{r_arrow}quintet nuclear spin conversion that necessarily accompanies the J = 1{r_arrow}0 rotational relaxation. They also have observed a sharp inelastic peak at 9.3 meV, which corresponds to a local vibrational mode of CH{sub 4} rattling in its cage at {approximately} 2.2 THz. Other peaks involving higher-energy vibrational excitations in CD{sub 4}/C{sub 60} correspond in energy to assigned peaks in the inelastic neutron scattering spectra of C{sub 60}, albeit sometimes with different intensities.

More Details

Markov Modeling with Soft Aggregation for Safety and Decision Analysis

Cooper, James A.

The methodology in this report improves on some of the limitations of many conventional safety assessment and decision analysis methods. A top-down mathematical approach is developed for decomposing systems and for expressing imprecise individual metrics as possibilistic or fuzzy numbers. A ''Markov-like'' model is developed that facilitates combining (aggregating) inputs into overall metrics and decision aids, also portraying the inherent uncertainty. A major goal of Markov modeling is to help convey the top-down system perspective. One of the constituent methodologies allows metrics to be weighted according to significance of the attribute and aggregated nonlinearly as to contribution. This aggregation is performed using exponential combination of the metrics, since the accumulating effect of such factors responds less and less to additional factors. This is termed ''soft'' mathematical aggregation. Dependence among the contributing factors is accounted for by incorporating subjective metrics on ''overlap'' of the factors as well as by correspondingly reducing the overall contribution of these combinations to the overall aggregation. Decisions corresponding to the meaningfulness of the results are facilitated in several ways. First, the results are compared to a soft threshold provided by a sigmoid function. Second, information is provided on input ''Importance'' and ''Sensitivity,'' in order to know where to place emphasis on considering new controls that may be necessary. Third, trends in inputs and outputs are tracked in order to obtain significant information% including cyclic information for the decision process. A practical example from the air transportation industry is used to demonstrate application of the methodology. Illustrations are given for developing a structure (along with recommended inputs and weights) for air transportation oversight at three different levels, for developing and using cycle information, for developing Importance and Sensitivity measures for soil aggregation, for developing dependence methodology, for constructing early alert logic, for tracking trends, for relating the Markov model to other (e.g., Reason) models, for developing and demonstrating rudimentary laptop software, and for developing an input/output display methodology.

More Details

Key Geomechanics Issues at the Waste Isolation Pilot Plant Geomechanics

Hansen, Francis D.

Mechanical and hydrological properties of rock salt provide excellent bases for geological isolation of hazardous materials. Regulatory compliance determinations for the Waste Isolation Pilot Plant (WIPP) stand as testament to the widely held conclusion that salt provides excellent isolation properties. The WIPP saga began in the 1950s when the U.S. National Academy of Sciences (NAS) recommended a salt vault as a promising solution to the national problem of nuclear waste disposal. For over 20 years, the Scientific basis for the NAS recommendation has been fortified by Sandia National Laboratories through a series of large scale field tests and laboratory investigations of salt properties. These scientific investigations helped develop a comprehensive understanding of salt's 4 reformational behavior over an applicable range of stresses and temperatures. Sophisticated constitutive modeling, validated through underground testing, provides the computational ability to model long-term behavior of repository configurations. In concert with advancement of the mechanical models, fluid flow measurements showed not only that the evaporite lithology was essentially impermeable but that the WIPP setting was hydrologically inactive. Favorable mechanical properties ensure isolation of materials placed in a salt geological setting. Key areas of the geomechanics investigations leading to the certification of WIPP are in situ experiments, laboratory tests, and shaft seal design.

More Details

An Evaluation of Prototype Circuit Boards Assembled with a Sn-Ag Bi Solder

Vianco, Paul T.; Rejent, Jerome A.

An evaluation was performed which examined the aging of surface mount solder joints assembled with 91.84Sn-3.33Ag-4.83Bi solder. Defect analysis of the as-fabricated test vehicles revealed excellent solderability, good package alignment, and a minimum number of voids. Continuous DC electrical monitoring of the solder joints did not reveal opens during as many as 10,000 thermal cycles (0 C, 100 C). The solder joints exhibited no significant degradation through 2500 cycles, based upon an absence of microstructural damage and sustained shear and pull strengths of chip capacitors and J-leaded solder joints, respectively. Thermal cycles of 5000 and 10,000 resulted in some surface cracking of the solder fillets and coatings. In a few cases, deeper cracks were observed in the thinner reaches of several solder fillets. There was no deformation or cracking in the solder located in the gap between the package I/O and the circuit board pad nor in the interior of the fillets, both locations that would raise concerns of joint mechanical integrity. A drop in the chip capacitor shear strength was attributed to crack growth near the top of the fillet.

More Details

Laser Diagnostics for Wire Array Z-Pinch Shock Physics Experiments

Asay, J.R.; Knudson, Marcus D.; Trott, Wayne M.; Hall, Clint A.; Bailey, James E.

The Z Accelerator is a fast pulse power facility capable of performing high-pressure studies of the dynamic response of materials under loading conditions unachievable with other methods. A variety of advanced laser diagnostics have been implemented on the facility for shock physics experiments. These include multipoint laser velocity interferometry,line and full field velocity interferometry, time-resolved optical and uv spectroscopy, and both active and passive shock breakout.

More Details

The Effect of Shock Stress and Field Strength on Shock-Induced Depoling of Normally Poled PZT 95/5

Setchell, Robert E.; Montgomery, Stephen; Chhabildas, L.C.; Furnish, Michael D.

Shock-induced depoling of the ferroelectric ceramic PZT 95/5 is utilized in a number of pulsed power devices. Several experimental and theoretical efforts are in progress in order to improve numerical simulations of these devices. In this study we have examined the shock response of normally poled PZT 95/5 under uniaxial strain conditions. On each experiment the current produced in an external circuit and the transmitted waveform at a window interface were recorded. The peak electrical field generated within the PZT sample was varied through the choice of external circuit resistance. Shock pressures were varied from 0.6 to 4.6 GPa, and peak electrical fields were varied from 0.2 to 37 kV/cm. For a 2.4 GPa shock and the lowest peak field, a nearly constant current governed simply by the remanent polarization and the shock velocity was recorded. Both decreasing the shock pressure and increasing the electrical field resulted in reduced current generation, indicating a retardation of the depoling kinetics.

More Details

On-Off Minimum-Time Control With Limited Fuel Usage: Global Optima Via Linear Programming

Driessen, Brian J.

A method for finding a global optimum to the on-off minimum-time control problem with limited fuel usage is presented. Each control can take on only three possible values: maximum, zero, or minimum. The simplex method for linear systems naturally yields such a solution for the re-formulation presented herein because it always produces an extreme point solution to the linear program. Numerical examples for the benchmark linear flexible system are presented.

More Details

Experimental Results for Minimum-Time Trajectory Tracking of a Direct-Drive Three-Link Planar Arm

Driessen, Brian J.

This work is an experimental investigation of the ability of a real three-link direct-drive arm to track model-based minimum-time trajectories that have been found off-line. Sufficiently large velocity gains in the computed torque control law were not achievable with the velocity sensors described herein. This indicates the critical importance of the velocity sensing when attempting to track trajectories that push the envelope of the system's torque capabilities.

More Details

Measurements of Spatially Resolved Velocity Variations in Shock Compressed Heterogeneous Materials Using a Line-Imaging Velocity Interferometer

Trott, Wayne M.; Knudson, Marcus D.; Chhabildas, L.C.; Asay, J.R.

Relatively straightforward changes in the optical design of a conventional optically recording velocity interferometer system (ORVIS) can be used to produce a line-imaging velocity interferometer wherein both temporal and spatial resolution can be adjusted over a wide range. As a result line-imaging ORVIS can be tailored to a variety of specific applications involving dynamic deformation of heterogeneous materials as required by the characteristic length scale of these materials (ranging from a few {micro}m for ferroelectric ceramics to a few mm for concrete). A line-imaging ORVIS has been successfully interfaced to the target chamber of a compressed gas gun driver and fielded on numerous tests in combination with simultaneous measurements using a dual delay-leg, ''push-pull'' VISAR system. These tests include shock loading of glass-reinforced polyester composites, foam reverberation experiments (measurements at the free surface of a thin aluminum plate impacted by foam), and measurements of dispersive velocity in a shock-loaded explosive simulant (sugar). Comparison of detailed spatially-resolved material response to the spatially averaged VISAR measurements will be discussed.

More Details

Foam Microrheology

Kraynik, Andrew M.

The microrheology of liquid foams is discussed for two different regimes: static equilibrium where the capillary number Ca is zero, and the viscous regime where viscosity and surface tension are important and Ca is finite. The Surface Evolver is used to calculate the equilibrium structure of wet Kelvin foams and dry soap froths with random structure, i.e., topological disorder. The distributions of polyhedra and faces are compared with the experimental data of Matzke. Simple shearing flow of a random foam under quasistatic conditions is also described. Viscous phenomena are explored in the context of uniform expansion of 2D and 3D foams at low Reynolds number. Boundary integral methods are used to calculate the influence of Ca on the evolution of foam microstructure, which includes bubble shape and the distribution of liquid between films, Plateau borders, and (in 3D) the nodes where Plateau borders meet. The micromechanical point of view guides the development of structure-property-processing relationships for foams.

More Details

A Coupled Damage and Reaction Model for Simulating Energetic Material Response to Impact Hazards

Baer, M.R.

The Baer-Nunziato multiphase reactive theory for a granulated bed of energetic material is extended to allow for dynamic damage processes, that generate new surfaces as well as porosity. The Second Law of Thermodynamics is employed to constrain the constitutive forms of the mass, momentum, and energy exchange functions as well as those for the mechanical damage model ensuring that the models will be dissipative. The focus here is on the constitutive forms of the exchange functions. The mechanical constitutive modeling is discussed in a companion paper. The mechanical damage model provides dynamic surface area and porosity information needed by the exchange functions to compute combustion rates and interphase momentum and energy exchange rates. The models are implemented in the CTH shock physics code and used to simulate delayed detonations due to impacts in a bed of granulated energetic material and an undamaged cylindrical sample.

More Details

Native Plant Uptake Model for Radioactive Waste Disposal Areas at the Nevada Test Site

Brown, Theresa J.

This report defines and defends the basic framework, methodology, and associated input parameters for modeling plant uptake of radionuclides for use in Performance Assessment (PA) activities of Radioactive Waste Management Sites (RWMS) at the Nevada Test Site (NTS). PAs are used to help determine whether waste disposal configurations meet applicable regulatory standards for the protection of human health, the environment, or both. Plants adapted to the arid climate of the NTS are able to rapidly capture infiltrating moisture. In addition to capturing soil moisture, plant roots absorb nutrients, minerals, and heavy metals, transporting them within the plant to the above-ground biomass. In this fashion, plant uptake affects the movement of radionuclides. The plant uptake model presented reflects rooting characteristics important to plant uptake, biomass turnover rates, and the ability of plants to uptake radionuclides from the soil. Parameters are provided for modeling plant uptake and estimating surface contaminant flux due to plant uptake under both current and potential future climate conditions with increased effective soil moisture. The term ''effective moisture'' is used throughout this report to indicate the soil moisture that is available to plants and is intended to be inclusive of all the variables that control soil moisture at a site (e.g., precipitation, temperature, soil texture, and soil chemistry). Effective moisture is a concept used to simplify a number of complex, interrelated soil processes for which there are too little data to model actual plant available moisture. The PA simulates both the flux of radionuclides across the land surface and the potential dose to humans from that flux. Surface flux is modeled here as the amount of soil contamination that is transferred from the soil by roots and incorporated into aboveground biomass. Movement of contaminants to the surface is the only transport mechanism evaluated with the model presented here. Parameters necessary for estimating surface contaminant flux due to native plants expected to inhabit the NTS RWMSS are developed in this report. The model is specific to the plant communities found at the NTS and is designed for both short-term (<1,000 years) and long-term (>1,000 years) modeling efforts. While the model has been crafted for general applicability to any NTS PA, the key radionuclides considered are limited to the transuranic (TRU) wastes disposed of at the NTS.

More Details

Performance Assessment Uncertainty Analysis for Japan's HLW Program Feasibility Study (H12)

Webb, Erik K.

Most HLW programs in the world recognize that any estimate of long-term radiological performance must be couched in terms of the uncertainties derived from natural variation, changes through time and lack of knowledge about the essential processes. The Japan Nuclear Cycle Development Institute followed a relatively standard procedure to address two major categories of uncertainty. First, a FEatures, Events and Processes (FEPs) listing, screening and grouping activity was pursued in order to define the range of uncertainty in system processes as well as possible variations in engineering design. A reference and many alternative cases representing various groups of FEPs were defined and individual numerical simulations performed for each to quantify the range of conceptual uncertainty. Second, parameter distributions were developed for the reference case to represent the uncertainty in the strength of these processes, the sequencing of activities and geometric variations. Both point estimates using high and low values for individual parameters as well as a probabilistic analysis were performed to estimate parameter uncertainty. A brief description of the conceptual model uncertainty analysis is presented. This paper focuses on presenting the details of the probabilistic parameter uncertainty assessment.

More Details

The Use of MACCS in a Non-Reactor Application

Gregory, Julie J.

Dose calculations were performed using the MELCOR Accident Consequence Code System (MACCS) to support safety analyses for the Los Alamos Neutron Science Center (LANSCE) facility. The LANSCE facility is operated and maintained at Los Alamos National Laboratory (LANL) and will be used to conduct experiments for the U.S. Department of Energy (DOE) to investigate the use of accelerators to produce tritium. This paper focuses on tbe methodology adopted in tbe evaluation of doses from potential accidental releases of radioactive material from the LANSCE facility. Some results of the dose calculations are presented. Also discussed are the important features of an isotope screening process developed for this application to limit the number of consequence calculations.

More Details

Microstructural and Mechanical Characterization of Actively Brazed Alumina Specimens

Welding Journal Research Supplement

Hosking, F.M.; Cadden, C.H.; Stephens, J.J.; Glass, S.J.; Yang, N.Y.C.; Vianco, P.V.; Walker, C.A.

Alumina (94 and 99.8% grade compositions) was brazed directly to itself with gold-based active brazing alloys (ABA's) containing vanadium additions of 1,2 and 3 weight percent. The effects of brazing conditions on the joint properties were investigated. Wetting behavior, interfacial reactions, microstructure, hermeticity and tensile strength were determined. Wetting was fair to good for the ABA and base material combinations. Microanalysis identified a discontinuous Al-V-O spinel reaction product at the alumina-braze interface. Tensile strength results for 94% alumina were uniformly good and generally not sensitive to the vanadium concentration, with tensile values of 85-105 MPa. There was more variability in the 99.8% alumina strength results, with values ranging from 25-95 MPa. The highest vanadium concentration (3 wt. %) yielded the highest joint strength for the brazed 99.8% alumina. Failures in the 99.8% alumina samples occurred at the braze-alumina interface, while the 94% alumina specimens exhibited fracture of the ceramic substrate.

More Details

Characteristics of Creep Damage for 60Sn-40Pb Solder Material

Fang, H.E.

This paper presents a viscoplasticity model taking into account the effects of change in grain or phase size and damage on the characterization of creep damage in 60Sn-40Pb solder. Based on the theory of damage mechanics, a two-scalar damage model is developed for isotropic materials by introducing the free energy equivalence principle. The damage evolution equations are derived in terms of the damage energy release rates. In addition, a failure criterion is developed based on the postulation that a material element is said to have ruptured when the total damage accumulated in the element reaches a critical value. The damage coupled viscoplasticity model is discretized and coded in a general-purpose finite element program known as ABAQUS through its user-defined material subroutine UMAT. To illustrate the application of the model, several example cases are introduced to analyze, both numerically and experimentally, the tensile creep behaviors of the material at three stress levels. The model is then applied to predict the deformation of a notched specimen under monotonic tension at room temperature (22 C). The results demonstrate that the proposed model can successfully predict the viscoplastic behavior of the solder material.

More Details

Sandia National Laboratories Education Outreach Activities

Alliance for Photonic Technology/Industrial Quarterly

Dawes Jr., William R.

The US Department of Energy and its national laboratories are a major employer of scientists and engineers and consequently have a strong interest in the development and training of a qualified pool of employment candidates. For many years the DOE and its national laboratories have supported education activities devoted to increasing the number and quality of science and engineering graduates. This is part of the DOE mission because of the critical national need for scientists and engineers and the recognized deficiencies in the education system for science and mathematics training. Though funding support for such activities has waxed and waned, strong education programs have survived in spite of budget pressures. This paper reviews a few of the education programs presently supported at Sandia by the Science and Technology Outreach Department. The US DOE Defense Programs Office and Sandia National Laboratories provide financial support for these education activities.

More Details

Interpretation of Actinide-Distribution Data Obtained from Non-Destructive and Destructive Post-Test Analyses of an Intact-Core Column of Culebra Dolomite

Journal of Contaminant Hydrology

Perkins, W.G.; Lucero, Daniel A.

The US DOE, with technical assistance from Sandia National Laboratories, has successfully received EPA certification and opened the Waste Isolation Pilot Plant (WIPP), a nuclear waste disposal facility located approximately 42 km east of Carlsbad, New Mexico. Performance assessment analyses indicate that human intrusions by inadvertent, intermittent drilling for resources provide the only credible mechanisms for releases of radionuclides from the disposal system. In modeling long-term brine releases, subsequent to a drilling event, potential migration pathways through the permeable layers of rock above the Salado formation were analyzed. Major emphasis is placed on the Culebra Member of the Rustler Formation because this is the most transmissive geologic layer overlying the WIPP site. In order to help quantify parameters for the calculated releases, radionuclide transport experiments have been earned out using intact-core columns obtained from the Culebra dolomite member of the Rustler Formation within the WIPP site. This paper deals primarily with results of analyses for {sup 241}Pu and {sup 241}Am distributions developed during transport experiments in one of these cores. Transport experiments were done using a synthetic brine that simulates Culebra brine at the core recovery location (the WIPP air-intake shaft--AIS). Hydraulic characteristics (i.e., apparent porosity and apparent dispersion coefficient) for intact-core columns were obtained via experiments using the conservative tracer {sup 22}Na. Elution experiments carried out over periods of a few days with tracers {sup 232}U and {sup 239}Np indicated that these tracers were weakly retarded as indicated by delayed elution of the species. Elution experiments with tracers {sup 241}Pu and {sup 241}Am were attempted, but no elution of either species has been observed to date, including experiments of many months' duration. In order to quantify retardation of the non-eluted species {sup 241}Pu and {sup 241}Am after a period of brine flow, non-destructive and destructive analyses of one intact-core column were carried out to determine distribution of these actinides in the rock. Analytical results indicate that the majority of the {sup 241}Am remained very near the injection surface of the core (possibly as a precipitate), and that the majority of the {sup 241}Pu was dispersed with a very high apparent retardation value. The {sup 241}Pu distribution is interpreted using a single-porosity advection-dispersion model, and an approximate retardation value is reported.

More Details

Swing-Free Cranes via Input Shaping of Operator Commands

Groom, Kenneth N.

This paper presents an open-loop control method for suppressing payload oscillation or swing caused by operator commanded maneuvers in rotary boom cranes and the method is experimentally verified on a one-sixteenth scale model of a Hagglunds shipboard crane. The crane configuration consists of a payload mass that swings like a spherical pendulum on the end of a lift-line which is attached to a boom capable of hub rotation (slewing) and elevation (luffing). Positioning of the payload is accomplished through the hub and boom angles and the load-line length. Since the configuration of the crane affects the excitation and response of the payload, the swing control scheme must account for the varying geometry of the system. Adaptive forward path command filters are employed to remove components of the command signal which induce payload swing.

More Details

Atom-by-Atom and Concerted Hopping of Adatom Pairs on an Open Metal Surface

Physical Review Letters

Bogicevic, Alexander

Atom-by-atom and concerted hopping of ad-dimers on the open (100) surface of fcc metals are studied by means of density-functional calculations. The adatom interaction is relatively short-ranged, and beyond next-nearest neighbors ad-dimers are effectively dissociated. Diffusion takes place by a simple shearing process, favored because it maximizes adatom coordination at the transition state This holds for Al, Au, and Rh, and is likely a general result because geometrical arguments dominate over details of the electronic structure.

More Details

LaNiO(3) Buffer Layers for High Critical Current Density YBa(2)Cu(3)O(7-delta) and Tl(2)Ba(2)CaCu(2)O(8-delta) Films

Applied Physics Letters

Siegal, Michael P.

We demonstrate high critical current density superconducting films of YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} (YBCO) and Tl{sub 2}Ba{sub 2}CaCu{sub 2}O{sub 8{minus}{delta}} (Tl-2212) using LaNiO{sub 3} (LNO) buffer layers. YBCO films grown on an LNO buffer layer have only a slightly lower J{sub c} (5K, H=0) than films grown directly on a bare LaAlO{sub 3} substrate. It is noteworthy that YBCO films grown on LNO buffer layers exhibit minor microstructural disorder and enhanced flux pinning. LNO-buffered Tl-2212 samples show large reductions in J{sub c} at all temperatures and fields compared to those grown on bare LaAlO{sub 3}, correlating to both a-axis grain and nonsuperconducting phase formation. With additional optimization, LNO could be a promising buffer layer for both YBCO and Tl-based superconducting films, perhaps ideally suited for coated conductor applications.

More Details

Scaling Laws for Mesoscale and Microscale Systems

IEEE Transactions on CPMT - Advanced Packaging

Spletzer, Barry L.

The set of laws developed and presented here is by no means exhaustive. Techniques have been present to aid in the development of additional scaling laws and to combine these and other laws to produce additional useful relationships. Some of the relationships produced here have yielded perhaps surprising results. Examples include the fifth order scaling law for electromagnetic motor torque and the zero order scaling law for capacitive motor power. These laws demonstrate important facts about actuators in small-scale systems. The primary intent of this introduction into scaling law analysis is to provide needed tools to examine possible areas of the research in small-scale systems and direct research toward more fruitful areas. Numerous examples have been included to show the validity of developing scaling laws based on first principles and how real world systems tend to obey these laws even when many other variables may potentially come into play. Development of further laws may well serve to provide important high-level direction to the continued development of small-scale systems.

More Details

Manipulating Polymer Connectivity to Control Interfacial Fracture

Physical Review Letters

Stevens, Mark J.

By studying model polymeric networks which only differ in their connectivity, the connectivity is shown to strongly control the stress-strain response and failure modes. The sequence of molecular structural deformations that lead to failure are strongly dependent upon the network connectivity. A set of ideal, ordered networks are constructed to manipulate the deformation sequence to achieve a variety of adhesive qualities. Compared to random, dynamically formed networks, these ideal networks can be made to have either much larger or smaller failure stresses and strains. Unlike the random networks, the failure stress of an ideal network can be made close to the ideal stress equal to breaking all bonds to the substrate. By varying the number of bonds to the surface, the failure mode can be controlled to be either adhesive or cohesive.

More Details

Scientific Meetings Database: A New Tool for CTBT-Related International Cooperation

Girven, Mary L.

More Details

Determining a Method to Pressure Test a Novel Type of Glass

Rice, Catherine D.

A novel type of glass made with a double ion exchange process is more reliable and fractures in a unique manner compared to glass currently available in the market. The novel glass is unique because it disintegrates into a powder instead of fracturing into shards and splinters, and it fails over a very narrow range of stresses. Potential applications for this glass include using it in removable valves because the powdered glass does not produce obstructions when it breaks, and in other applications that require safety glass. A 20,000-psi MTS pressure system was used to determine the possible techniques for pressure testing the strength of a collection of disk-shaped glass samples. Ordinary (i.e., not ion exchanged) glass samples, 0.962 inches in diameter and 0.07 inches thick, were fractured with linearly increasing pressures to determine the best methods. The best method for testing novel glass samples, with the same size and shape as the ordinary glass, will be implemented. The final results of this ongoing project will be used to ascertain if the novel glass is suitable for potential applications.

More Details

Projected Consequence for Potential Sabotage Events Related to Spent Fuel Shipments

Shyr, Lih-Jenn; Neuhauser, Sieglinde; Mills, Scott; Massey, Charles

More Details

Porosity in Polysilsesquioxane Xerolgels

Schneider, Duane A.; Loy, Douglas A.

Polymerization of organotrialkoxysilanes is a convenient method for introducing organic functionality into hybrid organic-inorganic materials. However, not much is known about the effects of the organic substituent on the porosity of the resulting xerogels. In this study, we prepared a series of polysilsesquioxane xerogels from organotrialkoxysilanes, RSi(OR{sup 1}){sub 3}, with different organic groups (R = H, Me, Et dodecyl, hexadecyl, octadecyl, vinyl, chloromethyl, (p-chloromethyl) phenyl, cyanoethyl). Polymerizations of the monomers were carried out under a variety of conditions, varying monomer concentration, type of catalyst, and alkoxide substituent. The effect of the organic substituent on the sol-gel process was often dramatic. In many cases, gels were formed only at very high monomer concentration and/or with only one type of catalyst. All of the gels were processed as xerogels and characterized by scanning electron microscopy and nitrogen sorption porosimetry to evaluate their pore structure.

More Details

Intermediate Strain-Rate Loading Experiments - Technique and Applications to Ceramics

Chhabildas, L.C.

A new test methodology is described which allows access to loading rates that lie between split Hopkinson bar and shock-loading techniques. Gas gun experiments combined with velocity interferometry techniques have been used to experimentally determine the intermediate strain-rate loading behavior of Coors AD995 alumina and Cercom silicon-carbide rods. Graded-density materials have been used as impactors; thereby eliminating the tension states generated by the radial stress components during the loading phase. Results of these experiments demonstrate that the time-dependent stress pulse generated during impact allows an efficient transition from the initial uniaxial strain loading to a uniaxial stress state as the stress pulse propagates through the rod. This allows access to intermediate loading rates over 5 x 10{sup 3}/s to a few times 10{sup 4}/s.

More Details

Transient Analysis for the Multimechanism-Deformation Parameters of Several Domal Salts

Munson, Darrell E.

Use of Gulf Coast salt domes for construction of very large storage caverns by solution mining has grown significantly in the last several decades. In fact, a nationally important Strategic Petroleum Reserve (SPR) storage occurs in large cavern arrays in some of these domes. Although caverns have been operated economically for these many years, these caverns have a range of relatively poorly understood behaviors, involving creep closure fluid loss and damage from salt falls. It is certainly possible to postulate that many of these behaviors stem from geomechanical or deformational aspects of the salt response. As a result, a method of correlating the cavern response to mechanical creep behavior as determined in the laboratory could be of considerable importance. Recently, detailed study of the creep response of domal salts has cast some insight into the influence of different salt origins on cavern behavior. The study used a simple graphical analysis of the limited non-steady state data to give a bound, or an approach to steady state, as an estimate of the steady state behavior of a given domal salt. This permitted the analysis of sparse creep databases for domal salts. It appears that a shortcoming of the steady state analysis was in masking some of the salt material differences. In an attempt to overcome the steady state analysis shortcomings, a method was developed based on the integration of the Multimechanism-Deformation (M-D) creep constitutive model to fit the transient response. This integration process essentially permits definition of the material sensitive parameters of the model, while those parameters that are either constants or material insensitive parameters are fixed independently. The transient analysis method has proven more sensitive to differences in the creep characteristics and has provided a way of defining different behaviors within a given dome. Creep characteristics, as defined by the transient analysis of the creep rate, are related quantitatively to the volume loss creep rate of the caverns. This type of understanding of the domal material creep response already has pointed to the possibility of establishing various distinct material spines within a given dome. Furthermore, if the creep databases for domal salts can be expanded, one could expect additional definition of domal geology and structure.

More Details

Data Torturing and the Misuse of Statistical Tools

Hoover, Marcey L.

Statistical concepts, methods, and tools are often used in the implementation of statistical thinking. Unfortunately, statistical tools are all too often misused by not applying them in the context of statistical thinking that focuses on processes, variation, and data. The consequences of this misuse may be ''data torturing'' or going beyond reasonable interpretation of the facts due to a misunderstanding of the processes creating the data or the misinterpretation of variability in the data. In the hope of averting future misuse and data torturing, examples are provided where the application of common statistical tools, in the absence of statistical thinking, provides deceptive results by not adequately representing the underlying process and variability. For each of the examples, a discussion is provided on how applying the concepts of statistical thinking may have prevented the data torturing. The lessons learned from these examples will provide an increased awareness of the potential for many statistical methods to mislead and a better understanding of how statistical thinking broadens and increases the effectiveness of statistical tools.

More Details

A Quantitative Study of Tethered Chains in Various Solution Conditions Using Langmuir Diblock Copolymer Monolayers

Macromolecular Chemistry and Physics

Kent, Michael S.

This article summarizes our investigations of tethered chain systems using Langmuir monolayer of polydimethysiloxane-poly styrene (PDMS-PS) diblock copolymers on organic liquids. In this system, the PDMS block adsorbs to the air surface while the PS block dangles into the subphase liquid. The air surface can be made either repulsive or attractive for the tethered PS chain segments by choosing a subphase liquid which has a surface tension lower or greater than that of PS, respectively. The segment profile of the PS block is determined by neutron reflection as a function of the surface density, the molecular weights of the PS and PDMS blocks, and the solution conditions. We cover the range of reduced surface density (SIGMA) characteristic of the large body of data in the literature for systems of chains tethered onto solid surfaces from dilute solution in good or theta solvent conditions (SIGMA < 12). We emphasize quantitative comparisons with analytical profile forms and scaling predictions. We find that the strong-stretching limit invoked in analytical SCF and scaling theories is not valid over this Z range. On the other hand, over a large portion of this range (SIGMA < 5) tethered layers are well described by a renormalization group theory addressing weakly interacting or noninteracting chains. Simultaneous with the study of the profile form, the free energy of the chains is examined through the surface tension. A strong increase in the surface pressure is observed with increasing surface density which determines the maximum surface density which can be achieved. This apparently nonequilibrium effect is attributed to steric interactions and limited lateral interpenetration. This effect may explain several outstanding discrepancies regarding the adsorption of end-functionalized chains and diblock copolymers onto solid surfaces.

More Details

Lessons Learned from the Puerto Rico Battery Energy Storage System

Boyes, John D.

The Puerto Rico Electric Power Authority (PREPA) installed a battery energy storage system in 1994 at a substation near San Juan, Puerto Rico. It was patterned after two other large energy storage systems operated by electric utilities in California and Germany. The Puerto Rico facility is presently the largest operating battery storage system in the world and has successfully provided frequency control, voltage regulation, and spinning reseme to the Caribbean island. The system further proved its usefulness to the PREPA network in the fall of 1998 in the aftermath of Hurricane Georges. However, the facility has suffered accelerated cell failures in the past year and PREPA is committed to restoring the plant to full capacity. This represents the first repowering of a large utility battery facility. PREPA and its vendors and contractors learned many valuable lessons during all phases of project development and operation, which are summarized in this paper.

More Details

EDI as a Treatment Module in Recycling Spent Rinse Waters

Semiconductor International

Donovan, Robert P.; Morrison, Dennis J.

Recycling of the spent rinse water discharged from the wet benches commonly used in semiconductor processing is one tactic for responding to the targets for water usage published in the 1997 National Technology Roadmap for Semiconductors (NTRS). Not only does the NTRS list a target that dramatically reduces total water usage/unit area of silicon manufactured by the industry in the future but for the years 2003 and beyond, the NTRS actually touts goals which would have semiconductor manufacturers drawing less water from a regional water supply per unit area of silicon manufactured than the quantity of ultrapure water (UPW) used in the production of that same silicon. Achieving this latter NTRS target strongly implies more widespread recycling of spent rinse waters at semiconductor manufacturing sites. In spite of the fact that, by most metrics, spent rinse waters are of much higher purity than incoming municipal waters, recycling of these spent rinse waters back into the UPW production plant is not a simple, straightforward task. The rub is that certain of the chemicals used in semiconductor manufacturing, and thus potentially present in trace concentrations (or more) in spent rinse waters, are not found in municipal water supplies and are not necessarily removed by the conventional UPW production sequence used by semiconductor manufacturers. Some of these contaminants, unique to spent rinse waters, may actually foul the resins and membranes of the UPW system, posing a threat to UPW production and potentially even causing a shutdown.

More Details

Two and Three-Electrode Impedance Studies on 18650 Li-Ion Cells

Journal of the Electrochemical Society

Nagasubramanian, Ganesan

Two and three electrode impedance measurements were made on 18650 Li-ion cells at different QB temperatures ranging from 35 C to {minus}40 C. The ohmic resistance of the cell is nearly constant the temperature range studied although the total cell impedance increases by an order of magnitude in the same temperature range. In contrast to what is commonly believed, we show from our three-electrode impedance results that, the increase in cell impedance comes mostly from the cathode and not from the anode. Further, the anode and cathode contribute to both the impedance loops (in the NyQuist plot).

More Details

Copper Wetting of x-Al(2)O(3)(0001): Theory and Experiment

Surface Science

Jennison, Dwight R.

XPS studies have been carried out on sputter deposited copper on a substantially hydroxylated {alpha}-Al{sub 2}O{sub 3}(0001) (sapphire) surface under ultra-high vacuum (UHV) conditions. XPS-derived Cu uptake curves show a sharp change in slope at a coverage of 0.35 monolayer (on a Cu/O atomic basis), indicative of initial layer-by-layer growth. CU(LMM) lineshape data indicate that, prior to the first break in the curve, Cu is oxidized to Cu(I). At higher coverages, metallic CU(0) is. observed. These data agree with first principles theoretical calculations, indicating that the presence of ad-hydroxyl groups greatly enhances the binding of Cu to bulk sapphire surfaces, stabilizing Cu(I) adatoms over two-dimensional metallic islands. In the absence of hydroxylation, calculations indicate significantly weaker Cu binding to the bulk sapphire substrate and non-wetting. Calculations also predict that at Cu coverages above 1/3 monolayer (ML), Cu-Cu interactions predominate, leading to Cu(0) formation. These results are in excellent agreement with experiment. The ability of surface hydroxyl groups to enhance binding to alumina substrates suggests a reason for contradictory experimental results reported in the literature for Cu wetting of alumina.

More Details

Structure-Dependent Viscoelastic Properties of C(9)-Alkanethiol Monolayers

Tribology Letters

Shinn, Neal D.

Quartz crystal microbalance techniques and in situ spectroscopic ellipsometry are used to probe the structure-dependent intrinsic viscoelastic properties of self-assembled CH{sub 3}(CH{sub 2}){sub 8}SH alkanethiol monolayer adsorbed from the gas phase onto Au(111)-textured substrates. Physisorbed molecules, mixed chemisorbed-fluid/solid phases and solid-phase domain boundaries make sequentially dominant contributions to the measured energy dissipation in the growing monolayer. Deviations from Langmuir adsorption kinetics reveal a precursor-mediated adsorption channel. These studies reveal the impact of structural heterogeneity in tribological studies of monolayer lubricants.

More Details

Soft x-ray measurements of z-pinch-driven vacuum hohlraums

Applied Physics Letters

Porter, John L.

This letter reports the experimental characterization of a z-pinch-driven vacuum hohlraum. We have measured soft x-ray fluxes of 5 × 1012 W/cm2 radiating from the walls of hohlraums which are 2.4-2.5 cm in diameter by 1 cm tall. The x-ray source used to drive these hohlraums was a z pinch consisting of a 300 wire tungsten array driven by a 20 MA, 100 ns current pulse. In this hohlraum geometry, the z-pinch x-ray source can produce energies in excess of 800 kJ and powers in excess of 100 TW to drive these hohlraums. The x rays released in these hohlraums represent greater than a factor of 25 in energy and more than a factor of 3 in x-ray power over previous laboratory-driven hohlraums. © 1999 American Institute of Physics.

More Details

Ultrathin Alumina Film Al-Sublattice Structure, Metal Island Nucleation at Terrace Point Defects, and How Hydroxylation Affects Wetting

Jennison, Dwight R.

In this paper, we include for discussion three topics of current interest in metal oxide surface science. Using first principles density functional theory (DFT) [1] calculations, we have investigated: (1) the atomic-scale structure of experimentally-relevant ultrathin alumina films, (2) the role of common point defects in metal island nucleation on oxide terraces, and (3) the growth and morphology of metals on oxide surfaces which have high concentrations of a common impurity.

More Details

Pressure as a Probe of the Physics of Relaxor Ferroelectrics

Samara, George A.

Pressure studies have provided new insights into the physics of compositionally-disordered ABO{sub 3} oxide relaxors. Specifically results are presented and discussed on a pressure-induced ferroelectric-to-relaxor crossover phenomenon, the continuous evolution of the energetics and dynamics of the relaxation process, and the interplay between pressure and electric field in determining the dielectric response.

More Details

Novel Sol-Gel Based Pt Nanocluster Catalysts for Propane Dehydrogenation

Journal of Catalysis

Sault, Allen G.

We report propane dehydrogenation behavior of catalysts prepared using two novel synthesis strategies that combine inverse micelle Pt nanocluster technology with silica and alumina sol-gel processing. Unlike some other sol-gel catalyst preparations. Pt particles in these catalysts are not encapsulated in the support structure and the entire Pt particle surface is accessible for reaction. Turnover frequencies (TOF) for these catalysts are comparable to those obtained over Pt catalysts prepared by traditional techniques such as impregnation, yet the resistance to deactivation by carbon poisoning is much greater in our catalysts. The deactivation behavior is more typical of traditionally prepared PtSn catalysts than of pure Pt catalysts.

More Details

Suppression of Impurity Back Scattering in Double Quantum Wires: Theory Beyond the Born Approximation

Journal of Physics (Condensed Matter)

Lyo, Sungkwun K.

The effect of higher-order corrections to the Born approximation is studied for the previously obtained giant conductance enhancement in tunnel-coupled double quantum wires in a parallel magnetic field. The relative correction is found to be significant and depends on various effects such as the magnetic field, electron and impurity densities, impurity positions, symmetric and asymmetric doping profiles, and center barrier thickness.

More Details

Two and Three-Dimensional Nonlocal DFT for Inhomogeneous Fluids I: Algorithms and Parallelization

Journal Computational Physics

Frink, Laura J.D.; Salinger, Andrew

Fluids adsorbed near surfaces, macromolecules, and in porous materials are inhomogeneous, inhibiting spatially varying density distributions. This inhomogeneity in the fluid plays an important role in controlling a wide variety of complex physical phenomena including wetting, self-assembly, corrosion, and molecular recognition. One of the key methods for studying the properties of inhomogeneous fluids in simple geometries has been density functional theory (DFT). However, there has been a conspicuous lack of calculations in complex 2D and 3D geometries. The computational difficulty arises from the need to perform nested integrals that are due to nonlocal terms in the free energy functional These integral equations are expensive both in evaluation time and in memory requirements; however, the expense can be mitigated by intelligent algorithms and the use of parallel computers. This paper details our efforts to develop efficient numerical algorithms so that no local DFT calculations in complex geometries that require two or three dimensions can be performed. The success of this implementation will enable the study of solvation effects at heterogeneous surfaces, in zeolites, in solvated (bio)polymers, and in colloidal suspensions.

More Details

Two and Three Dimensional Nonlocal DFT for Inhomogeneous Fluids II: Solvated Polymers as a Benchmark Problem

Journal Computational Physics

Frink, Laura J.D.; Salinger, Andrew G.

In a previous companion paper, we presented the details of our algorithms for performing nonlocal density functional theory (DFT) calculations in complex 2D and 3D geometries. We discussed scaling and parallelization, but did not discuss other issues of performance. In this paper, we detail the precision of our methods with respect to changes in the mesh spacing. This is a complex issue because given a Cartesian mesh, changes in mesh spacing will result in changes in surface geometry. We discuss these issue using a series of rigid solvated polymer models including square rod polymers, cylindrical polymers, and bead-chain polymers. By comparing the results of the various models, it becomes clear that surface curvature or roughness plays an important role in determining the strength of structural solvation forces between interacting solvated polymers. The results in this paper serve as benchmarks for future application of these algorithms to complex fluid systems.

More Details

Irradiation-Induced Nanostructures

Materials Science and Engineering A

Birtcher, R.C.; Ewing, R.C.; Matzke, Hj; Meldrum, A.; Newcomer, P.P.; Wang, L.M.; Wang, S.X.; Weber, W.J.

This paper summarizes the results of the studies of the irradiation-induced formation of nanostructures, where the injected interstitials from the source of irradiation are not major components of the nanophase. This phenomena has been observed by in situ transmission electron microscopy (TEM) in a number of intermetallic compounds and ceramics during high-energy electron or ion irradiations when the ions completely penetrate through the specimen. Beginning with single crystals, electron or ion irradiation in a certain temperature range may result in nanostructures composed of amorphous domains and nanocrystals with either the original composition and crystal structure or new nanophases formed by decomposition of the target material. The phenomenon has also been observed in natural materials which have suffered irradiation from the decay of constituent radioactive elements and in nuclear reactor fuels which have been irradiated by fission neutrons and other fission products. The mechanisms involved in the process of this nanophase formation are discussed in terms of the evolution of displacement cascades, radiation-induced defect accumulation, radiation-induced segregation and phase decomposition, as well as the competition between irradiation-induced amorphization and recrystallization.

More Details

Novel Metal-Sulfur-Based Air-Stable Passivation of GaAs with Very Low Surface State Densities

Applied Physics Letters

Ashby, Carol I.H.; Baca, Albert G.; Chang, P.C.; Hafich, M.J.; Hammons, B.E.; Zavadil, Kevin R.

A new air-stable electronic surface passivation for GaAs and other III-V compound semiconductors that employs sulfur and a suitable metal ion, e.g., Zn, and that is robust towards plasma dielectric deposition has been developed. Initial improvements in photoluminescence are twice that of S-only treatments and have been preserved for >11 months with SiO{sub x}N{sub y} dielectric encapsulation. Photoluminescence and X-ray photoelectron spectroscopies indicate that the passivation consists of two major components with one being stable for >2 years in air. This process improves heterojunction bipolar transistor current gain for both large and small area devices.

More Details

Slim Holes for Small Power Plants

Finger, John T.

Geothermal research study at Sandia National Laboratories has conducted a program in slimhole drilling research since 1992. Although our original interest focused on slim holes as an exploration method, it has also become apparent that they have substantial potential for driving small-scale, off-grid power plants. This paper summarizes Sandia's slim-hole research program, describes technology used in a ''typical'' slimhole drilling project, presents an evaluation of using slim holes for small power plants, and lists some of the research topics that deserve further investigation.

More Details

Electrical Characteristics of 18650 Li-Ion Cells at Low Temperatures

Solid State Ionics

Nagasubramanian, Ganesan

Low temperature electrical performance characteristics of A and T, Moli, and Panasonic 18650 Li-ion cells are described. Ragone plots of energy and power data of the cells for different temperatures from 25 C to {minus}40 C are compared. Although the electrical performance of these cells at and around room temperature is respectable, at temperatures below 0 C the performance is poor. For example, the delivered power and energy densities of the Panasonic cells at 25 C are {approximately}800 W/l and {approximately}100 Wh/l respectively and those at {minus}40 C are <10 W/l and {approximately}5 Wh/l. In order to identify the source for this poor performance at subambient temperatures, both 2- and 3-electrode impedance studies were made on these cells. The 2-electrode impedance data suggests that the cell ohmic resistance remains nearly constant from 25 C to {minus}20 C but increases modestly at {minus}40 C while the overall cell impedance increases by an order of magnitude over the same temperature range. The 3-electrode impedance data of the A and T cells show that the increase in cell resistance comes mostly from the cathode electrolyte interface and very little either from the anode electrolyte interface or from the ohmic resistance of the cell. This suggests that the poor performance of the cells comes mainly from the high cathode/electrolyte interfacial impedance.

More Details

Geotechnical Perspectives on the Waste Isolation Pilot Plant (WIPP)

Francke, Chris T.; Hansen, Frank D.; Knowles, M.K.; Patchet, Stanley J.; Rempe, Norbert T.

The Waste Isolation Pilot Plant (WIPP) is the first nuclear waste repository certified by the United States Environmental Protection Agency. Success in regulatory compliance resulted from an excellent natural setting for such a repository, a facility with multiple, redundant safety systems, and from a rigorous, transparent scientific and technical evaluation. The WIPP story, which has evolved over the past 25 years, has generated a library of publications and analyses. Details of the multifaceted program are contained in the cited references. Selected geotechnical highlights prove the eminent suitability of the WIPP to serve its congressionally mandated purpose.

More Details

Breakdown During High-Field Bias-Temperature Stress

Fleetwood, Daniel M.

Measurements of dielectric breakdown during high-field electrical stress are typically performed at or near room temperature via constant voltage or current stress methods. In this summary they explore whether useful information might also be obtained by performing current measurements during a temperature ramp at high electric field.

More Details

Photoconductive Semiconductor Switch Technology for Short Pulse Electromagnetics and Lasers

Zutavern, Fred J.

High gain photoconductive semiconductor switches (PCSS) are being used to produce high power electromagnetic pulses foc (1) compact, repetitive accelerators, (2) ultra-wide band impulse sources, (3) precision gas switch triggers, (4) optically-activated firesets, and (5) high power optical pulse generation and control. High power, sub-nanosecond optical pulses are used for active optical sensors such as compact optical radars and range-gated hallistic imaging systems. Following a brief introduction to high gain PCSS and its general applications, this paper will focus on PCSS for optical pulse generation and control. PCSS technology can be employed in three distinct approaches to optical pulse generation and control: (1) short pulse carrier injection to induce gain-switching in semiconductor lasers, (2) electro-optical Q-switching, and (3) optically activated Q-switching. The most significant PCSS issues for these applications are switch rise time, jitter, and longevity. This paper will describe both the requirements of these applications and the most recent results from PCSS technology. Experiments to understand and expand the limitations of high gain PCSS will also be described.

More Details

Doped Contacts for High-Longevity Optically Activated, High Gain GaAs Photoconductive Semiconductor Switches

Mar, Alan

The longevity of high gain GaAs photoconductive semiconductor switches (PCSS) has been extended to over 50 million pulses. This was achieved by improving the ohmic contacts through the incorporation of a doped layer beneath the PCSS contacts which is very effective in the suppression of filament formation and alleviating current crowding to improve the longevity of PCSS. Virtually indefinite, damage-free operation is now possible at much higher current levels than before. The inherent damage-free current capacity of the switch depends on the thickness of the doped layers and is at least 100A for a dopant diffusion depth of 4pm. The contact metal has a different damage mechanism and the threshold for damage ({approximately}40A) is not further improved beyond a dopant diffusion depth of about 2{micro}m. In a diffusion-doped contact switch, the switching performance is not degraded when contact metal erosion occurs. This paper will compare thermal diffusion and epitaxial growth as approaches to doping the contacts. These techniques will be contrasted in terms of the fabrication issues and device characteristics.

More Details

Empirical Calculations of {sup 29}Si NMR Chemical Shielding Tensors: A Partial Charge Model Investigation of Hydrolysis in Organically Modified Alkoxy Silanes

Physical Chemistry and Chemical Physics

Alam, Todd M.

Organically modified alkoxy silanes play an important role in tailoring different properties of silica produced by the sol-gel method. Changes in the size and functionality of the organic group allows control of both physical and chemical properties of the resulting gel, with the kinetics of the polymerization process playing an important role in the design of new siloxane materials. High resolution {sup 29}Si NMR has proven to be valuable tool for monitoring the polymerization reaction, and has been used to investigate a variety of organically modified alkoxy silane systems.

More Details

Review of Back Contact Silicon Solar Cells for Low-Cost Application

Smith, David D.

Back contact solar cells hold significant promise for increased performance in photovoltaics for the near future. Two major advantages which these cells possess are a lack of grid shading loss and coplanar interconnection. Front contacted cells can have up to 10% shading loss when using screen printed metal grids. A front contact cell must also use solder connections which run from the front of one cell to the back of the next for series interconnection. This procedure is more difficult to automate than the case of co-planar contacts. The back contact cell design is not a recent concept. The earliest silicon solar cell developed by Bell Labs was a back contact device. There have been many design modifications to the basic concept over the years. To name a few, there is the Interdigitated Back Contact (IBC) cell, the Stanford Point contact solar cell, the Emitter Wrap Through (EWT), and its many variations. A number of these design concepts have demonstrated high efficiency. The SunPower back contact solar cell holds the efficiency record for silicon concentrator cells. The challenge is to produce a high efficiency cell at low cost using high throughput techniques. This has yet to be achieved with a back contact cell design. The focus of this paper will be to review the relevant features of back contact cells and progress made toward the goal of a low cost version of this device.

More Details

A Hit or Miss History of Statistics at Sandia

Diegert, Kathleen V.

The Statistics and Human Factors Department at SNL has evolved as the Labs' mission has evolved from engineering designs for the non-nuclear parts of nuclear weapons, including the safety and security components, to a multi-program lab focusing on national security. Twenty years ago their client base was the engineers, scientists, and managers of the nuclear weapon stockpile program, at Sandia and other facilities within the DOE complex. Client relationships developed over years of association. Components and systems were assigned to statisticians so that they could develop a knowledge base in that area. Because of the many different component types and system designs in the stockpile, they typically juggled five or six statistical projects at a time. project participation other than statistical consulting was limited. They rarely had the time to lead project teams, and any skills or inclinations in that direction were often undeveloped. This paper describes a (hit-or-miss) selection of some early and recent efforts. This paper also presents their self-assessment metrics and their external assessment metrics. These metrics were selected to track the business aspects of the department; they are systematic (not hit-or-miss). These two types of histories should allow them to judge whether we're doing the right things, and also doing things right.

More Details

Sensitivity Analysis and Uncertainty Propagation in a General-Purpose Thermal Analysis Code

Blackwell, Bennie F.

Methods are discussed for computing the sensitivity of field variables to changes in material properties and initial/boundary condition parameters for heat transfer problems. The method we focus on is termed the ''Sensitivity Equation Method'' (SEM). It involves deriving field equations for sensitivity coefficients by differentiating the original field equations with respect to the parameters of interest and numerically solving the resulting sensitivity field equations. Uncertainty in the model parameters are then propagated through the computational model using results derived from first-order perturbation theory; this technique is identical to the methodology typically used to propagate experimental uncertainty. Numerical results are presented for the design of an experiment to estimate the thermal conductivity of stainless steel using transient temperature measurements made on prototypical hardware of a companion contact conductance experiment. Comments are made relative to extending the SEM to conjugate heat transfer problems.

More Details

A Resampling Based Approach to Optimal Experimental Design for Computer Analysis of a Complex System

Rutherford, Brian

The investigation of a complex system is often performed using computer generated response data supplemented by system and component test results where possible. Analysts rely on an efficient use of limited experimental resources to test the physical system, evaluate the models and to assure (to the extent possible) that the models accurately simulate the system order investigation. The general problem considered here is one where only a restricted number of system simulations (or physical tests) can be performed to provide additional data necessary to accomplish the project objectives. The levels of variables used for defining input scenarios, for setting system parameters and for initializing other experimental options must be selected in an efficient way. The use of computer algorithms to support experimental design in complex problems has been a topic of recent research in the areas of statistics and engineering. This paper describes a resampling based approach to form dating this design. An example is provided illustrating in two dimensions how the algorithm works and indicating its potential on larger problems. The results show that the proposed approach has characteristics desirable of an algorithmic approach on the simple examples. Further experimentation is needed to evaluate its performance on larger problems.

More Details

Stressed Heat Affected Zone Simulations of AerMet 100 Alloy

Puskar, J.D.

AerMet 100 is a high strength, high fracture toughness alloy designed for use in aerospace applications. In previous work the welding behavior of this alloy has been evaluated, and it has been shown that a softened region in the heat-affected zone (HAZ) is a principal feature of the weld zone. A model for this softening, based on classical theories of precipitate coarsening and isothermal softening data, was developed and found to provide a reasonable description for weld thermal cycle simulation (Gleeble) experiments. Recent work has shown, however, that softening in real welds is not always well predicted by this model, so that additional effects, which are not captured in conventional Gleeble thermal cycle simulations must be addressed. In particular, the stresses associated with real weld HAZ's may modify the softening kinetics. In the current work, Gleeble simulations in both stress-free and stressed conditions have been conducted and the kinetics compared. The accuracy of the thermal model predictions have also been considered regarding their impact on estimated hardness values.

More Details

The Knowledge Base Interface for Parametric Grid Information

Hipp, James R.

The parametric grid capability of the Knowledge Base (KBase) provides an efficient robust way to store and access interpolatable information that is needed to monitor the Comprehensive Nuclear Test Ban Treaty. To meet both the accuracy and performance requirements of operational monitoring systems, we use an approach which combines the error estimation of kriging with the speed and robustness of Natural Neighbor Interpolation. The method involves three basic steps: data preparation, data storage, and data access. In past presentations we have discussed in detail the first step. In this paper we focus on the latter two, describing in detail the type of information which must be stored and the interface used to retrieve parametric grid data from the Knowledge Base. Once data have been properly prepared, the information (tessellation and associated value surfaces) needed to support the interface functionality, can be entered into the KBase. The primary types of parametric grid data that must be stored include (1) generic header information; (2) base model, station, and phase names and associated ID's used to construct surface identifiers; (3) surface accounting information; (4) tessellation accounting information; (5) mesh data for each tessellation; (6) correction data defined for each surface at each node of the surfaces owning tessellation (7) mesh refinement calculation set-up and flag information; and (8) kriging calculation set-up and flag information. The eight data components not only represent the results of the data preparation process but also include all required input information for several population tools that would enable the complete regeneration of the data results if that should be necessary.

More Details

Investigation of Rising-Sun Magnetrons Operated at Relativistic Voltages Using Three Dimensional Particle-in-Cell Simulations

Physics of Plasmas

Lemke, Raymond W.

This work is an attempt to elucidate effects that may limit efficiency in magnetrons operated at relativistic voltages (V {approximately} 500 kV). Three-dimensional particle-in-cell simulation is used to investigate the behavior of 14 and 22 cavity, cylindrical, rising-sun magnetrons. Power is extracted radially through a single iris located at the end of every other cavity. Numerical results show that in general output power and efficiency increase approximately linearly with increasing iris width (decreasing vacuum Q) until the total Q becomes too low for stable oscillation in the n-mode to be maintained. Beyond this point mode competition and/or switching occur and efficiency decreases. Results reveal that the minimum value of Q (maximum efficiency) that can be achieved prior to the onset of mode competition is significantly affected by the magnitude of the 0-space-harmonic of the {pi}-mode, a unique characteristic of rising-suns, and by the magnitude of the electron current density (space-charge effects). By minimizing these effects, up to 3.7 GW output power has been produced at an efficiency of 40%.

More Details

Point Defect Incorporation During Diamond Chemical Vapor Deposition

Journal of Materials Research

Battaile, Corbett C.

The incorporation of vacancies, H atoms, and sp{sup 2} bond defects into single-crystal homoepitaxial (100)(2x1)- and(111)-oriented CVD diamond was simulated by atomic-scale kinetic Monte Carlo. Simulations were performed for substrate temperatures from 600 C to 1200 C with 0.4% CH{sub 4} in the feed gas, and for 0.4% to 7% CH{sub 4} feeds with a substrate temperature of 800 C. The concentrations of incorporated H atoms increase with increasing substrate temperature and feed gas composition, and sp{sup 2} bond trapping increases with increasing feed gas composition. Vacancy concentrations are low under all conditions. The ratio of growth rate to H atom concentration is highest around 800-900 C, and the growth rate to sp{sup 2} ratio is maximum around 1% CH{sub 4}, suggesting that these conditions are ideal for economical diamond growth under the simulated conditions.

More Details

Bruker AMX Y Channel Heteronuclear Decoupling Using a Linear Amplifier

The NMR Newsletter

Alam, Todd M.

Under both static and common MAS conditions (< 15 kHz) the question of residual X-Y heteronuclear decoupling can become a complicating factor in the analysis of various NMR results. In our lab the impact of {sup 31}P-{sup 23}Na dipolar coupling on the observed {sup 23}Na M{sub 2} relaxation for a series of sodium phosphate glasses was recently investigated by employing continuous wave {sup 31}P decoupling during the entire pulse sequence. Initially these efforts were complicate by the inability to provide a gating pulse during the data acquisition using the standard Bruker nomenclature, go=2, for the acquisition loop. A pulse sequence to overcome these restrictions is given below. Our AMX400 instrument is configured with a 3 channel MCI, but utilizes a linear AMT amplifier on the 3rd channel (requiring gating pulse via the C4 program call during the entire time it is on). The standard acquisition loop has been replaced by direct adc and aq commands for data acquisition. Unlike the go=2 statement which does not allow a C4 gating command to be included, these individual acquisition commands can all include distinct C4 gating.

More Details

ZX Pulsed-Power Design

Struve, Kenneth

ZX is a new z-pinch accelerator planned as the next generation z-pinch driver at SNL, and as an intermediate step towards X-1. It is planned to drive either a single 50 MA z-pinch load, or two 25 to 30 MA z pinches. Three designs for the ZX accelerator are presented. All require 7 to 8 MV at the insulator stack to drive the z-pinch load to implosion in 100 to 120 ns. Two of the designs are based on the Z accelerator, and use water-line technology; a transit-time-isolated water adder, and a water transformer. The third design uses inductive-voltage adders in water. They also describe a low-inductance insulator stack design that helps minimize voltage requirements. This design is evaluated for water and vacuum break-down using JCM, THM, and magnetic-flashover-inhibition criteria.

More Details

Investigation of the Effects of Waterline Switch Capacitance on the Electrical Prepulse of the Z-Accelerator

Spielman, Rick

The Z-accelerator at the Sandia National Laboratories (SNL) was modified in 1996 to deliver a 20 MA pulse to a z-pinch load in 100 ns. The pulsed-power driver is a 36-module waterline accelerator. Each waterline contains four self-break switches as part of the pulse-forming section. A study was conducted to investigate the effects of increasing the capacitance of the waterline switches on the shape of the electrical prepulse at the load. Past studies have shown that increasing the prepulse at the z-pinch load increases the x-ray output power. In this study, one set of switches with its surrounding waterline hardware was modeled in 3-D and capacitance calculated using the electrostatic code, COULOME. The capacitance values were used in a SCREAMER model of the Z-accelerator. SCREAMER an SNL developed, lumped-element circuit code was used to calculate the time-dependent current waveforms delivered to the z-pinch load. The design was changed and a new capacitance matrix and output waveforms were calculated. This paper presents the results of the COULOMB 3-D modeling, and the SCREAMER circuit-model analyses.

More Details

Determination of Rock Mass Modulus Using the Plate Loading Method at Yucca Mountain, Nevada

George, James T.

A suite of plate loading tests has recently been conducted by Sandia National Laboratories at the Exploratory Studies Facility at Yucca Mountain, Nevada. Fielding of these in situ tests as well as other approaches undertaken for the determination of rock mass modulus are described. The various methodologies are evaluated and their data compared. Calculation by existing empirical methods and numerical modeling are compared to each other as well as to field data.

More Details

Experiment-Based Computational Investigation of Thermomechanical Stresses in Flip Chip BGA Using the ATC4.2 Test Vehicle

Peterson, David A.

Stress measurement test chips were flip chip assembled to organic BGA substrates containing micro-vias and epoxy build-up interconnect layers. Mechanical degradation observed during temperature cycling was correlated to a damage theory developed based on 3D finite element method analysis. Degradation included die cracking, edge delamination and radial fillet cracking.

More Details

Miniaturized Explosive Preconcentrator for Use in a Man-Portable Field Detection System

Hannum, David W.

We discuss the design and testing of a miniaturized explosives preconcentrator that can be used to enhance the capabilities of man-portable field detection systems, such as those based on ion mobility spectrometry (IMS). The preconcentrator is a smaller version of a similar device that was developed recently at Sandia National Laboratories for use in a trace detection portal that screens personnel for explosives. Like its predecessor, this preconcentrator is basically a filtering device that allows a small amount of explosive residue in a large incoming airflow to be concentrated into a much smaller air volume via adsorption and resorption, prior to delivery into a chemical detector. We discuss laboratory testing of this preconcentrator interfaced to a commercially available IMS-based detection system, with emphasis on the explosives 2,4,6-trinitrotoluene (TNT) and cyclotrimethylenetrinitramine (RDX). The issues investigated include optimization of the preconcentrator volume and inlet airflow, the use of different types of adsorbing surfaces within the preconcentrator, Wd preconcentrator efficiency and concentration factor. We discuss potential field applications of the preconcentrator, as well as avenues for further investigations and improvements.

More Details

Microfabricated Gas Phase Chemical Analysis Systems

Manginell, Ronald

A portable, autonomous, hand-held chemical laboratory ({mu}ChemLab{trademark}) is being developed for trace detection (ppb) of chemical warfare (CW) agents and explosives in real-world environments containing high concentrations of interfering compounds. Microfabrication is utilized to provide miniature, low-power components that are characterized by rapid, sensitive and selective response. Sensitivity and selectivity are enhanced using two parallel analysis channels, each containing the sequential connection of a front-end sample collector/concentrator, a gas chromatographic (GC) separator, and a surface acoustic wave (SAW) detector. Component design and fabrication and system performance are described.

More Details

Identification of Yield-Limiting Defects in a 0.5 Micron, Shallow Trench Isolation Technology

Henderson, Christopher L.

During the development and qualification of a radiation-hardened, 0.5 {micro}m shallow trench isolation technology, several yield-limiting defects were observed. The 256K (32K x 8) static-random access memories (SRAMs) used as a technology characterization vehicle had elevated power supply current during wafer probe testing. Many of the die sites were functional, but exhibited quiescent power supply current (I{sub DDQ}) in excess of 100 {micro}A, the present limit for this particular SRAM. Initial electrical analysis indicated that many of the die sites exhibited unstable I{sub DDQ} that fluctuated rapidly. We refer to this condition as ''jitter.'' The I{sub DDQ} jitter appeared to be independent of temperature and predominantly associated with the larger 256K SRAMs and not as prevalent in the 16K SRAMs (on the same reticle set). The root cause of failure was found to be two major processing problems: salicide bridging and stress-induced dislocations in the silicon islands.

More Details

Applications Analysis: Principles and Examples from Various Distributed Computer Applications at Sandia National Laboratories New Mexico

Nelson, Spencer D.

As information systems have become distributed over many computers within the enterprise, managing those applications has become increasingly important. This is an emerging area of work, recognized as such by many large organizations as well as many start-up companies. In this report, we present a summary of the move to distributed applications, some of the problems that came along for the ride, and some specific examples of the tools and techniques we have used to analyze distributed applications and gain some insight into the mechanics and politics of distributed computing.

More Details

A FORTRAN 77 Program and User's Guide for the Statistical Analyses of Scatterplots to Identify Important Factors in Large-Scale Simulations

Helton, Jon C.; Shortencarier, Maichael J.

A description and user's guide are given for a computer program, PATTRN, developed at Sandia National Laboratories for use in sensitivity analyses of complex models. This program is intended for use in the analysis of input-output relationships in Monte Carlo analyses when the input has been selected using random or Latin hypercube sampling. Procedures incorporated into the program are based upon attempts to detect increasingly complex patterns in scatterplots and involve the detection of linear relationships, monotonic relationships, trends in measures of central tendency, trends in measures of variability, and deviations from randomness. The program was designed to be easy to use and portable.

More Details

A History of Building 828, Sandia National Laboratories

O'Canna, Myra L.

This report documents the history of Building 828 in Sandia National Laboratories' Technical Area I. Building 828 was constructed in 1946 as a mechanical test laboratory for Los Alamos' Z-Division (later Sandia) as it moved to Sandia Base. The building has undergone significant remodeling over the years and has had a variety of occupants. The building was evaluated in compliance with the National Historic Preservation Act, but was not eligible for the National Register of Historic Places. Nevertheless, for many Labs employees, it was a symbol of Sandia's roots in World War II and the Manhattan Project.

More Details

Particle Transport in Parallel-Plate Reactors

Rader, Daniel J.

A major cause of semiconductor yield degradation is contaminant particles that deposit on wafers while they reside in processing tools during integrated circuit manufacturing. This report presents numerical models for assessing particle transport and deposition in a parallel-plate geometry characteristic of a wide range of single-wafer processing tools: uniform downward flow exiting a perforated-plate showerhead separated by a gap from a circular wafer resting on a parallel susceptor. Particles are assumed to originate either upstream of the showerhead or from a specified position between the plates. The physical mechanisms controlling particle deposition and transport (inertia, diffusion, fluid drag, and external forces) are reviewed, with an emphasis on conditions encountered in semiconductor process tools (i.e., sub-atmospheric pressures and submicron particles). Isothermal flow is assumed, although small temperature differences are allowed to drive particle thermophoresis. Numerical solutions of the flow field are presented which agree with an analytic, creeping-flow expression for Re < 4. Deposition is quantified by use of a particle collection efficiency, which is defined as the fraction of particles in the reactor that deposit on the wafer. Analytic expressions for collection efficiency are presented for the limiting case where external forces control deposition (i.e., neglecting particle diffusion and inertia). Deposition from simultaneous particle diffusion and external forces is analyzed by an Eulerian formulation; for creeping flow and particles released from a planar trap, the analysis yields an analytic, integral expression for particle deposition based on process and particle properties. Deposition from simultaneous particle inertia and external forces is analyzed by a Lagrangian formulation, which can describe inertia-enhanced deposition resulting from particle acceleration in the showerhead. An approximate analytic expression is derived for particle velocity at the showerhead exit as a function of showerhead geometry, flow rate, and gas and particle properties. The particle showerhead-exit velocity is next used as an initial condition for particle transport between the plates to determine whether the particle deposits on the wafer, as a function of shower-head-exit particle velocity, the plate separation, flow rate, and gas and particle properties. Based on the numerical analysis, recommendations of best practices are presented that should help tool operators and designers reduce particle deposition in real tools. These guidelines are not intended to replace detailed calculations, but to provide the user with a general feel for inherently-clean practices.

More Details

Photonic Band Gap Structures as a Gateway to Nano-Photonics

Lyo, Sungkwun K.; Jones, Eric D.; Lin, Shawn-Yu; Fritz, Ian J.; Hietala, Vincent M.; Wendt, Joel R.; Vawter, Gregory A.; Klem, John F.; Kurtz, Sharon L.; Gourley, Paul L.

This LDRD project explored the fundamental physics of a new class of photonic materials, photonic bandgap structures (PBG), and examine its unique properties for the design and implementation of photonic devices on a nano-meter length scale for the control and confinement of light. The low loss, highly reflective and quantum interference nature of a PBG material makes it one of the most promising candidates for realizing an extremely high-Q resonant cavity, >10,000, for optoelectronic applications and for the exploration of novel photonic physics, such as photonic localization, tunneling and modification of spontaneous emission rate. Moreover, the photonic bandgap concept affords us with a new opportunity to design and tailor photonic properties in very much the same way we manipulate, or bandgap engineer, electronic properties through modern epitaxy.

More Details

Fusion Welding of AerMet 100 Alloy

Robino, Charles V.; Michael, Joseph R.

A database of mechanical properties for weldment fusion and heat-affected zones was established for AerMet{reg_sign}100 alloy, and a study of the welding metallurgy of the alloy was conducted. The properties database was developed for a matrix of weld processes (electron beam and gas-tungsten arc) welding parameters (heat inputs) and post-weld heat treatment (PWHT) conditions. In order to insure commercial utility and acceptance, the matrix was commensurate with commercial welding technology and practice. Second, the mechanical properties were correlated with fundamental understanding of microstructure and microstructural evolution in this alloy. Finally, assessments of optimal weld process/PWHT combinations for cotildent application of the alloy in probable service conditions were made. The database of weldment mechanical properties demonstrated that a wide range of properties can be obtained in welds in this alloy. In addition, it was demonstrated that acceptable welds, some with near base metal properties, could be produced from several different initial heat treatments. This capability provides a means for defining process parameters and PWHT's to achieve appropriate properties for different applications, and provides useful flexibility in design and manufacturing. The database also indicated that an important region in welds is the softened region which develops in the heat-affected zone (HAZ) and analysis within the welding metallurgy studies indicated that the development of this region is governed by a complex interaction of precipitate overaging and austenite formation. Models and experimental data were therefore developed to describe overaging and austenite formation during thermal cycling. These models and experimental data can be applied to essentially any thermal cycle, and provide a basis for predicting the evolution of microstructure and properties during thermal processing.

More Details

Advanced Blade Manufacturing Project - Final Report

Ashwill, Thomas D.

The original scope of the project was to research improvements to the processes and materials used in the manufacture of wood-epoxy blades, conduct tests to qualify any new material or processes for use in blade design and subsequently build and test six blades using the improved processes and materials. In particular, ABM was interested in reducing blade cost and improving quality. In addition, ABM needed to find a replacement material for the mature Douglas fir used in the manufacturing process. The use of mature Douglas fir is commercially unacceptable because of its limited supply and environmental concerns associated with the use of mature timber. Unfortunately, the bankruptcy of FloWind in June 1997 and a dramatic reduction in AWT sales made it impossible for ABM to complete the full scope of work. However, sufficient research and testing were completed to identify several promising changes in the blade manufacturing process and develop a preliminary design incorporating these changes.

More Details

An Implementation of the Berlekamp-Massey Linear Feedback Shift-Register Synthesis Algorithm in the C Programming Language

Campbell, Philip L.

This report presents an implementation of the Berlekamp-Massey linear feedback shift-register (LFSR) synthesis algorithm in the C programming language. Two pseudo-code versions of the code are given, the operation of LFSRs is explained, C-version of the pseudo-code versions is presented, and the output of the code, when run on two input samples, is shown.

More Details

Electroslag Remelting (ESR) Slags for Removal of Radioactive Oxide Contaminants from Stainless Steel, Annual Report (1998-1999)

Van Den Avyle, James A.

Decontamination of radioactive contaminated stainless steel using the ESR process is investigated by conducting thermophysical and thermochemical laboratory studies on the slag. The ESR base slag investigated in this research project is 60wt%CaF{sub 2}-20wt%CaO-20wt%Al{sub 2}O{sub 3}. In this report, we present the data obtained to date on relevant slag properties, capacity to incorporate the radioactive contaminant (using CeO{sub 3}) as surrogate, simulant for PUO{sub 2} and UO{sub 2}, slag-metal partition coefficient, volatilization rate and volatile species, viscosity, electrical conductivity and surface tension as a function of temperature. The impact of these properties on the ESR decontamination process is presented.

More Details

A Numerical Feasibility Study of Three-Component Induction Logging for Three Dimensional Imaging About a Single Borehole

Alumbaugh, David L.; Walck, Marianne C.

A theoretical analysis has been completed for a proposed induction logging tool designed to yield data which are used to generate three dimensional images of the region surrounding a well bore. The proposed tool consists of three mutually orthogonal magnetic dipole sources and multiple 3 component magnetic field receivers offset at different distances from the source. The initial study employs sensitivity functions which are derived by applying the Born Approximation to the integral equation that governs the magnetic fields generated by a magnetic dipole source located within an inhomogeneous medium. The analysis has shown that the standard coaxial configuration, where the magnetic moments of both the source and the receiver are aligned with the axis of the well bore, offers the greatest depth of sensitivity away from the borehole compared to any other source-receiver combination. In addition this configuration offers the best signal-to-noise characteristics. Due to the cylindrically symmetric nature of the tool sensitivity about the borehole, the data generated by this configuration can only be interpreted in terms of a two-dimensional cylindrical model. For a fill 3D interpretation the two radial components of the magnetic field that are orthogonal to each other must be measured. Coil configurations where both the source and receiver are perpendicular to the tool axis can also be employed to increase resolution and provide some directional information, but they offer no true 3D information.

More Details

Photosensitive Point Defects in Optical Glasses: Science and Applications

Nuclear Instruments and Methods B

Potter Jr., B.G.; Simmons-Potter, K.

The understanding and manipulation of the point defect structure in oxide glasses have been critical to the enhanced performance and reliability of optical-fiber-based, photosensitive photonic devices that currently found widespread application in telecommunications and remote sensing technologies. We provide a brief review of past research investigating photosensitive mechanisms in germanosilicate glasses, the primary material system used in telecommunications fibers. This discussion motivates an overview of ongoing work within our laboratories to migrate photosensitive glass technologies to a planar format for integrated photonic applications. Using reactive-atmosphere, RF-magnetron sputtering, we have demonstrated control of glass defect structure during synthesis, thereby controlling both the material photosensitivity (i. e. dispersion and magnitude of the refractive index change) and its environmental stability.

More Details

Actinide Biocolloid Formation in Brine by Halophilic Bacteria

Materials Research Symposium

Brady, Patrick V.

We examined the ability of a halophilic bacterium (WFP 1A) isolated from the Waste Isolation Pilot Plant (WIPP) site to accumulate uranium in order to determine the potential for biocolloid facilitated actinide transport. The bacterial cell Surface functional groups involved in the complexation of the actinide were determined by titration. Uranium, added as uranyl nitrate, was removed from solution at pH 5 by cells but at pH 7 and 9 very little uranium was removed due to its limited volubility. Although present as soluble species, uranyl citrate at pH 5, 7, and 9, and uranyl carbonate at pH 9 were not removed by the bacterium because they were not bioavailable due to their neutral or negative charge. Addition of uranyl EDTA to brine at pH 5, 7, and 9 resulted in the immediate precipitation of U. Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) analysis revealed that uranium was not only associated with the cell surface but also accumulated intracellulary as uranium-enriched granules. Extended X-ray absorption fine structure (EXAFS) analysis, of the bacterial cells indicated the bulk sample contained more than one uranium phase. Nevertheless these results show the potential for the formation of actinide bearing bacterial biocolloids that are strictly regulated by the speciation and bioavailability of the actinide.

More Details

On the Red-Blue Set Cover Problem

Carr, Robert D.

Both the increased complexity of integrated circuits, resulting in six or more levels of integration, and the increasing use of flip-chip packaging have driven the development of integrated circuit (IC) failure analysis tools that can be applied to the backside of the chip. Among these new approaches are focused ion beam (FIB) tools and processes for performing chip edits/repairs from the die backside. This paper describes the use of backside FIB for a failure analysis application rather than for chip repair. Specifically, we used FIB technology to prepare an IC for inspection of voided metal interconnects (''lines'') and vias. Conventional FIB milling was combined with a super-enhanced gas assisted milling process that uses XeF{sub 2} for rapid removal of large volumes of bulk silicon. This combined approach allowed removal of the TiW underlayer from a large number of Ml lines simultaneously, enabling rapid localization and plan view imaging of voids in lines and vias with backscattered electron (BSE) imaging in a scanning electron microscope (SEM). Sequential cross sections of individual voided vias enabled us to develop a 3-d reconstruction of these voids. This information clarified how the voids were formed, helping us identify the IC process steps that needed to be changed.

More Details

Distributed Sensing and Shape Control of Piezoelectric Bimorph Mirrors

Redmond, James M.

As part of a collaborative effort between Sandia National Laboratories and the University of Kentucky to develop a deployable mirror for remote sensing applications, research in shape sensing and control algorithms that leverage the distributed nature of electron gun excitation for piezoelectric bimorph mirrors is summarized. A coarse shape sensing technique is developed that uses reflected light rays from the sample surface to provide discrete slope measurements. Estimates of surface profiles are obtained with a cubic spline curve fitting algorithm. Experiments on a PZT bimorph illustrate appropriate deformation trends as a function of excitation voltage. A parallel effort to effect desired shape changes through electron gun excitation is also summarized. A one dimensional model-based algorithm is developed to correct profile errors in bimorph beams. A more useful two dimensional algorithm is also developed that relies on measured voltage-curvature sensitivities to provide corrective excitation profiles for the top and bottom surfaces of bimorph plates. The two algorithms are illustrated using finite element models of PZT bimorph structures subjected to arbitrary disturbances. Corrective excitation profiles that yield desired parabolic forms are computed, and are shown to provide the necessary corrective action.

More Details

Focused Ion Beam Induced Effects on MOS Transistor Parameters

Campbell, Ann N.

We report on recent studies of the effects of 50 keV focused ion beam (FIB) exposure on MOS transistors. We demonstrate that the changes in value of transistor parameters (such as threshold voltage, V{sub t}) are essentially the same for exposure to a Ga+ ion beam at 30 and 50 keV under the same exposure conditions. We characterize the effects of FIB exposure on test transistors fabricated in both 0.5 {micro}m and 0.225 {micro}m technologies from two different vendors. We report on the effectiveness of overlying metal layers in screening MOS transistors from FIB-induced damage and examine the importance of ion dose rate and the physical dimensions of the exposed area.

More Details

Die Backside FIB Preparation for Identification and Characterization of Metal Voids

Campbell, Ann N.

Both the increased complexity of integrated circuits, resulting in six or more levels of integration, and the increasing use of flip-chip packaging have driven the development of integrated circuit (IC) failure analysis tools that can be applied to the backside of the chip. Among these new approaches are focused ion beam (FIB) tools and processes for performing chip edits/repairs from the die backside. This paper describes the use of backside FIB for a failure analysis application rather than for chip repair. Specifically, they used FIB technology to prepare an IC for inspection of voided metal interconnects (lines) and vias. Conventional FIB milling was combined with a super-enhanced gas assisted milling process that uses XeF{sub 2} for rapid removal of large volumes of bulk silicon. This combined approach allowed removal of the TiW underlayer from a large number of Ml lines simultaneously, enabling rapid localization and plan view imaging of voids in lines and vias with backscattered electron (BSE) imaging in a scanning electron microscopy (SEM). Sequential cross sections of individual voided vias enabled them to develop a 3-d reconstruction of these voids. This information clarified how the voids were formed, helping to identify the IC process steps that needed to be changed.

More Details

Research Opportunities in Crystalline Silicon Photovoltaics for the 21st Century

Gee, James M.

Crystalline silicon continues to be the dominant semiconductor material used for terrestrial photovoltaics. This paper discusses the scientific issues associated with silicon photovoltaics processing, and cell design that may yield cell and module performance improvements that are both evolutionary and revolutionary in nature. We first survey critical issues in ''thick'' crystalline silicon photovoltaics, including novel separations processes for impurity removal, impurity and defect fundamentals, interface passivation, the role of hydrogen. Second, we outline emerging opportunities for creation of a very different ''thin-layer'' silicon cell structure, including the scientific issues and engineering challenges associated with thin-layer silicon processing and cell design.

More Details

Modeling a Dry Etch Process for Large-Area Devices

Buss, Richard J.

There has been considerable interest in developing dry processes which can effectively replace wet processing in the manufacture of large area photovoltaic devices. Environmental and health issues are a driver for this activity because wet processes generally increase worker exposure to toxic and hazardous chemicals and generate large volumes of liquid hazardous waste. Our work has been directed toward improving the performance of screen-printed solar cells while using plasma processing to reduce hazardous chemical usage.

More Details

Probabilistic Accident Consequence Uncertainty - A Joint CEC/USNRC Study

Gregory, Julie J.

The joint USNRC/CEC consequence uncertainty study was chartered after the development of two new probabilistic accident consequence codes, MACCS in the U.S. and COSYMA in Europe. Both the USNRC and CEC had a vested interest in expanding the knowledge base of the uncertainty associated with consequence modeling, and teamed up to co-sponsor a consequence uncertainty study. The information acquired from the study was expected to provide understanding of the strengths and weaknesses of current models as well as a basis for direction of future research. This paper looks at the elicitation process implemented in the joint study and discusses some of the uncertainty distributions provided by eight panels of experts from the U.S. and Europe that were convened to provide responses to the elicitation. The phenomenological areas addressed by the expert panels include atmospheric dispersion and deposition, deposited material and external doses, food chain, early health effects, late health effects and internal dosimetry.

More Details

A Numerical Analysis of 3D EM Imaging from a Single Borehole

Alumbaugh, David L.

In this study we analyze the feasibility of three dimensional (3D) electromagnetic (EM) imaging from a single borehole. The proposed logging tool consists of three mutually orthogonal magnetic dipole sources and multiple three component magnetic field receivers. A sensitivity analysis indicates that the most important sensor configuration for providing 3D geological information about the borehole consists of a transmitter with moment aligned parallel to the axis of the borehole, and receivers aligned perpendicular to the axis. The standard coaxial logging configuration provides the greatest depth of sensitivity compared to other configurations, but offers no information regarding 3D structure. Two other tool configurations in which both the source and receiver are aligned perpendicular to the borehole axis provide some directional information and therefore better image resolution, but not true 3D information. A 3D inversion algorithm has been employed to demonstrate the plausibility of 3D inversion using data collected with the proposed logging tool. This study demonstrates that an increase in image resolution results when three orthogonal sources are incorporated into the logging tool rather than a single axially aligned source.

More Details

Highly-Efficient Laser with Self-Aligned Waveguide and Current Confinement by Selective Oxidation

Allerman, A.; Blum, O.; Gao, Y.; Vawter, G.A.

We report highly efficient, low-threshold-current edge-emitting lasers where both the optical waveguide and lateral current confinement are achieved by lateral selective oxidation of AlGaAs. External differential quantum efficiency in excess of 95% and 40% wall-plug efficiency are demonstrated in 600 {micro}m-long devices without facet coatings. Shorter, 300-{micro}m-long, uncoated devices have <6 mA threshold currents. This high-performance is a combined result of placement of the oxide layers so as to achieve the minimum optical mode volume and bi-parabolic grading of the Al{sub x}Ga{sub 1{minus}x}As heteroepitaxy for minimum height/potential barriers, less than 15 meV, created by the wide-energy-gap layers required for selective wet oxidation. Since the initial development of wet AlGaAs oxidation methods, a number of oxidized edge-emitting laser concepts have been tried. The most successful of these have used lateral selective oxidation of AlGaAs layers between 100 and 300 nm thickness. These layers have been used as current restricting apertures or for both current restriction and lateral waveguiding. Use of an oxide layer above and below the laser active region offers the ability to create a self-aligned waveguide with current apertures on both sides of the pn-junction in a process requiring only one epitaxial growth step. Previous use apertures for these dual purposes resulted multi-moded lasers with reduced efficiency and elevated threshold current density due to non-ideal formation of the waveguide and possibly excess stress caused by the thick (300 nm) oxide layer.

More Details

Ferroelectric-to-Relaxor Crossover and Oxygen Vacancy Hopping in Compositionally-Disordered Perovskites - KtA(1-x)Nb(x)O(3):Ca

Physical Review B

Samara, George A.

It is shown that lattice disorder induced by Nb and Ca substitution has a strong influence on the dielectric and relaxational properties of KTaO{sub 3}. Both substituents are believed to occupy off-center positions at the Ta site, and the difference in valence between the Ca{sup 2+} and Ta{sup 5+} ions leads to the formation of oxygen vacancies (V{sub 0}). Specifically, for a KTa{sub 1{minus}x}Nb{sub x}O{sub 3}:Ca crystal with x = 0.023 and with a 0.055 at.% Ca doping they observe: (1) a ferroelectric transition at atmospheric pressure (1 bar); (2) a large enhancement of the transition temperature by Ca doping; (3) a pressure-induced crossover from ferroelectric-to-relaxor behavior; (4) the impending vanishing of the relaxor phase at high pressure; (5) the reorientation of the Ca-oxygen vacancy (Ca:V{sub 0}) pair defect; and (6) the variation of the energetics and dynamics of this reorientation with pressure. Most of these effects are associated with Nb- and Ca-induced dipolar entities and appear to be general features of soft mode ferroelectrics with random-site polar nanodomains. The ferroelectric-to-relaxor crossover can be understood in terms of a large decrease with pressure in the correlation length among polar nanodomains--a unique property of soft ferroelectric mode systems.

More Details

Uniaxial Compression Experiments on Lead Zirconate Titanate 95/5-2Nb Ceramic: Evidence for an Orientation-Dependent, ''Maximum Compressive Stress'' Criterion for Onset of the Ferroelectric - Antiferroelectric Polymorphic Transformation

Journal of Materials Research

Zeuch, David H.

Some time ago we presented evidence that, under nonhydrostatic loading, the F{sub R1} {r_arrow} A{sub O} polymorphic transformation of unpoled PZT 95/5-2Nb (PNZT) ceramic began when the maximum compressive stress equaled the hydro-static pressure at which the transformation otherwise took place. Recently we showed that this simple criterion did not apply to nonhydrostatically compressed, poled ceramic. However, unpoled ceramic is isotropic, whereas poled ceramic has a preferred crystallographic orientation and is mechanically anisotropic. If we further assume that the transformation depends not only on the magnitude of the compressive stress, but also its orientation relative to some feature(s) of PNZT's crystallography, then these disparate results can be qualitatively resolved. It has long been known that this transformation can be triggered in uniaxial compression. Our modified hypothesis makes two predictions for transformation of unpoled polycrystals under uniaxial stress: (i) the transformation should begin when the maximum compressive stress, {sigma}{sub 1}, equals the hydrostatic pressure for transformation, and (ii) a steadily increasing axial stress should be required to drive the transformation.

More Details

Coupling Through Tortuous Path Narrow Slot Apertures into Complex Cavitivies

IEEE Applied Physics

Warne, Larry K.

A hybrid FEM/MoM model has been implemented to compute the coupling of fields into a cavity through narrow slot apertures having depth. The model utilizes the slot model of Warne and Chen [23]-[29] which takes into account the depth of the slot, wall losses, and inhomogeneous dielectrics in the slot region. The cavity interior is modeled with the mixed-order, covariant-projection hexahedral elements of Crowley [32]. Results are given showing the accuracy and generality of the method for modeling geometrically complex slot-cavity combinations.

More Details

Development of Characterization Tools for Reliability Testing of MicroElectroMechanical System Actuators

Smith, Norman F.

Characterization tools have been developed to study the performance characteristics and reliability of surface micromachined actuators. These tools include (1) the ability to electrically stimulate or stress the actuator, (2) the capability to visually inspect the devices in operation, (3) a method for capturing operational information, and (4) a method to extract performance characteristics from the operational information. Additionally, a novel test structure has been developed to measure electrostatic forces developed by a comb drive actuator.

More Details

Analysis of the Interaction of Short-Pulse High-Fluence Radiation with Targets

Lawrence, R.J.

We generally use large-scale hydrocodes to study the dynamic response of targets to influence pulsed radiation loads. However, for many applications where the desired solution does not require a detailed specification of pressure- or velocity-time histories, there are simple analytic approaches that can yield surprisingly accurate results. Examples include determining either the final velocity of a radiation-driven flying plate or the impulse delivered to a structural element. These methods are all based on relatively straightforward use of conservation of mass and momentum, but they typically need one scaling-law parameter. In this context, short pulse means short compared to the characteristic time of the desired response, which allows for the phenomena to be essentially uncoupled. High fluence means that the input energy is great enough to yield vaporization or blowoff of one or more portions of the configuration. We discuss some of these methods, give examples, and suggest limitations and criteria for their use.

More Details

Quantitative Analysis with Heavy Ion E-TOF ERD

Banks, James C.

Heavy ion TOF ERD combined with energy detection (E-TOF-ERD) is a powerful analytical technique taking advantage of the following facts: the scattering cross section is usually very high ({approximately}10{sup {minus}21} cm{sup 2}/sr) compared to regular He RBS ({approximately}10{sup {minus}25} cm{sup 2}/sr), contrary to what happens with the energy resolution in ordinary surface solid barrier detectors, time resolution is almost independent of the atomic mass of the detected element, and the detection in coincidence of time and energy signals allows for the mass separation of overlapping signals with the same energy (or time of flight). Measurements on several oxides have been performed with the E-TOF-ERD set up at Sandia National Laboratories using an incident beam of 10-15 MeV Au. The information on the composition of the sample is obtained from the time domain spectrum, which is converted to energy domain, and then, using existing software codes, the analysis is performed. During the quantification of the results, they have found problems related to the interaction of the beam with the sample and to the tabulated values of the stopping powers for heavy ions.

More Details

Electronic Sputtering of Solids by Slow, Highly Charged Ions: Fundamentals and Applications

Banks, James C.

Characterization tools have been developed to study the performance characteristics and reliability of surface micromachined actuators. These tools include (1) the ability to electrically stimulate or stress the actuator, (2) the capability to visually inspect the devices in operation, (3) a method for capturing operational information, and (4) a method to extract performance characteristics from the operational information. Additionally, a novel test structure has been developed to measure electrostatic forces developed by a comb drive actuator.

More Details

Solid Freeform Fabrication Using the Wirefeed Process

Griffith, Michelle L.

Direct metal deposition technologies produce complex, near net shape components from CAD solid models. Most of these techniques fabricate a component by melting powder in a laser weld pool, rastering this weld bead to form a layer, and additively constructing subsequent layers. This talk describes a new direct metal deposition process, known as WireFeed, whereby a small diameter wire is used instead of powder as the feed material to fabricate components. Currently, parts are being fabricated from stainless steel. Microscopy studies show the WireFeed parts to be fully dense with fine microstructural features. Initial mechanical tests show stainless steel parts to have good strength values with retained ductility.

More Details

Design of Experiments to Estimate Temperature Dependent Thermal Properties

Dowding, Kevin J.

Experimental conditions are studied to optimize transient experiments for estimating temperature dependent thermal conductivity and volumetric heat capacity. Thermal properties are assumed to vary linearly with temperature; a total of four parameters describe linearly varying thermal conductivity and volumetric heat capacity. A numerical model of experimental configurations is studied to determine the optimum conditions to conduct the experiment. The criterion D-optimality is used to study the sensor locations, heating duration and magnitude, and experiment duration for finite and semi-infinite configurations. Results indicate that D-optimality is an order of magnitude larger for the finite configuration and hence will provide estimates with a smaller confidence region.

More Details

Parallel FE Approximation of the Even/Odd Parity Form of the Linear Boltzmann Equation

Mathematical and Computer Modeling

Drumm, Clifton R.

A novel solution method has been developed to solve the linear Boltzmann equation on an unstructured triangular mesh. Instead of tackling the first-order form of the equation, this approach is based on the even/odd-parity form in conjunction with the conventional mdtigroup discrete-ordinates approximation. The finite element method is used to treat the spatial dependence. The solution method is unique in that the space-direction dependence is solved simultaneously, eliminating the need for the conventional inner iterations, and the method is well suited for massively parallel computers.

More Details

Comparisons Between Integral Equation Theory and Molecular Dynamics Simulations for Atomistic Models of Polyethylene Liquids

Journal of Chemical Physics

Curro, John G.

Molecular dynamics (MD) simulations were performed on dense liquids of polyethylene chains of 24 and 66 united atom CH{sub 2} units. A series of models was studied ranging in atomistic detail from coarse-grained, freely-jointed, tangent site chains to realistic, overlapping site models subjected to bond angle restrictions and torsional potentials. These same models were also treated with the self-consistent, polymer reference interaction site model (PRISM) theory. The intramolecular and total structure factors, as well as, the intermolecular radial distribution functions g(r) and direct correlation functions C(r) were obtained from theory and simulation. Angular correlation functions were also simulation obtained from the MD simulations. Comparisons between theory and reveal that PRISM theory works well for computing the intermolecular structure of coarse-grained chain models, but systematically underpredicts the extent of intermolecular packing as more atomistic details are introduced into the model. A consequence of g(r) having insufficient structure is that the theory yields an isothermal compressibility that progressively becomes larger, relative to the simulations, as overlapping the PRISM sites and angular restrictions are introduced into the model. We found that theory could be considerably improved by adding a tail function to C(r) beyond the effective hard core diameter. The range of this tail function was determined by requiring the theory to yield the correct compressibility.

More Details

Coordination Compounds of Strontium. Syntheses, Characterizations, and Crystal Structures of [Sr(u-ONc)(2)(HONc(4))]2 and Sr(5)(u(4)-O)(u(3)-ONep)(4)(u-ONep)(4)(HONep)(solv)(4) (ONc=O(2)CCH(2)CMe(3));Nep=CH(2)CMe(3); solv=tetrahydrofuran or 1-methyl-imida

Journal of Coordination Chemistry

Boyle, Timothy

The authors have synthesized and characterized two novel Sr compounds: [Sr({mu}-ONc){sub 2}(HONc){sub 4}]{sub 2} (1, ONc = O{sub 2}CCH{sub 2}CMe{sub 3}), and Sr{sub 5}({mu}{sub 4}-O)({mu}{sub 3}-ONep){sub 4}({mu}-ONep){sub 4}(HONep)(solv){sub 4} [ONep = OCH{sub 2}CMe{sub 3}, solv = tetrahydrofuran (THF), 2a; 1-methyl-imidazole (MeIm), (2b)], that demonstrate increased solubility in comparison to the commercially available Sr precursors. The two metal centers of 1 share 4 unidentate bridging {mu}-ONc ligands and complete their octahedral geometry through the coordination of 4 monodentate terminal HONc ligands. The structure arrangement of the central core of 2a and b are identical, wherein 4 octahedral Sr atoms are arranged in a square geometry around a {mu}{sub 4}-O ligand. An additional 7-coordinated Sr atom sits directly atop the {mu}{sub 4}-O to form a square base pyramidal arrangement of the Sr atoms but the apical Sr-O distance is too long to be considered a bond. In solution, compound 1 is disrupted forming a monomer but 2a and b retain their structures.

More Details

Picosecond Electronic Spectroscopy to Determine the Transformation Mechanism for the Pressure-Induced Phase Transition in Shocked CdS

Knudson, Marcus D.

Plate impact, shock wave experiments provide a unique method to investigate the time-dependent mechanisms and the kinetics associated with pressure-induced phenomena, such as chemical reactions and phase transformations. The very rapid and well defined loading conditions associated with plate-impact experiments permit real-time examination of the shock-induced changes. Further, the ability to propagate the shock wave along various crystallographic directions provides the means to perform careful analysis of the stress and orientational dependence. Recently, an experimental method has been developed to observe real-time changes in the absorption transmission of materials, with 100 or 200 ps resolution, in single-event, plate impact shock experiments [1-4]. These data can provide useful information regarding the material under investigation. In particular, the dependence of the absorption edge on photon energy can distinguish between direct and indirect electronic transitions, and can provide an estimate of the band-gap energy of the material [5]. Along with ab-initio techniques to calculate the electronic structure of a crystalline system, this electronic information can be used to gain insight regarding the crystal structure. As described in Ref. [1,2,4] the wurtzite-to-rocksalt phase transition in cadmium sulfide (CdS) is well suited to investigation through the use of fast electronic spectroscopy; the wurtzite and rocksalt phases exhibit a direct and indirect band gap with band gap energies of 2.5 and 1.5-1.7 eV, respectively [6-8]. The intent of this work was to use picosecond electronic spectroscopy and ab-initio methods to examine the real-time structural changes that occur in the initial stages of the shock-induced wurtzite-to-rocksalt phase transition in single crystal CdS.

More Details

Sabotage at Nuclear Power Plants

Purvis, James W.

Recently there has been a noted worldwide increase in violent actions including attempted sabotage at nuclear power plants. Several organizations, such as the International Atomic Energy Agency and the US Nuclear Regulatory Commission, have guidelines, recommendations, and formal threat- and risk-assessment processes for the protection of nuclear assets. Other examples are the former Defense Special Weapons Agency, which used a risk-assessment model to evaluate force-protection security requirements for terrorist incidents at DOD military bases. The US DOE uses a graded approach to protect its assets based on risk and vulnerability assessments. The Federal Aviation Administration and Federal Bureau of Investigation conduct joint threat and vulnerability assessments on high-risk US airports. Several private companies under contract to government agencies use formal risk-assessment models and methods to identify security requirements. The purpose of this paper is to survey these methods and present an overview of all potential types of sabotage at nuclear power plants. The paper discusses emerging threats and current methods of choice for sabotage--especially vehicle bombs and chemical attacks. Potential consequences of sabotage acts, including economic and political; not just those that may result in unacceptable radiological exposure to the public, are also discussed. Applicability of risk-assessment methods and mitigation techniques are also presented.

More Details

Vulnerability Analysis Considerations for the Transportation of Special Nuclear Material

Purvis, James W.

The vulnerability analysis methodology developed for fixed nuclear material sites has proven to be extremely effective in assessing associated transportation issues. The basic methods and techniques used are directly applicable to conducting a transportation vulnerability analysis. The purpose of this paper is to illustrate that the same physical protection elements (detection, delay, and response) are present, although the response force plays a dominant role in preventing the theft or sabotage of material. Transportation systems are continuously exposed to the general public whereas the fixed site location by its very nature restricts general public access.

More Details

Material Protection, Control, and Accountancy (MPC&A) Sustainability

Baumann, Mark J.

To date, the Department of Energy's (DOE) Material Protection, Control, and Accountancy (MPC and A) program has assisted in the implementation of operational site-wide MPC and A systems at several nuclear facilities in Russia. Eleven sites from the civilian sector have completed the site-wide installations and two have completed sub-site installations. By the end of 1999, several additional sites will have completed site-wide and sub-site system installations through DOE assistance. the effort at the completed sites has focused primarily on the design, integration, and installation of upgraded MPC and A systems. In most cases, little work has been performed to ensure that the installed systems will be sustained. Because of concerns that the installed systems would not be operated in the future, DOE established a sustainability pilot program involving the 11 sites. The purpose of DOE's MPC and A Sustainability Program is to ensure that MPC and A upgrades installed at sites in Russia are effective and will continue to operate over the long term. The program mission is to work with sites where rapid upgrades have been completed to cultivate enduring and consistent MPC and A practices. The program attempts to assist the Russian sites to develop MPC and A organizations that will operate, maintain, and continue to improve the systems and procedures. Future assistance will strive to understand and incorporate culturally sensitive approaches so that the sites take ownership for all MPC and A matters. This paper describes the efforts of the sustainability program to date.

More Details

Thin Foil Acceleration Method for Measuring the Unloading Isentropes of Shock-Compressed Matter

Asay, J.R.

This work has been performed as part of the search for possible ways to utilize the capabilities of laser and particle beams techniques in shock wave and equation of state physics. The peculiarity of these techniques is that we have to deal with micron-thick targets and not well reproducible incident shock wave parameters, so all measurements should be of a high resolution and be done in one shot. Besides the Hugoniots, the experimental basis for creating the equations of state includes isentropes corresponding to unloading of shock-compressed matter. Experimental isentrope data are most important in the region of vaporization. With guns or explosive facilities, the unloading isentrope is recovered from a series of experiments where the shock wave parameters in plates of standard low-impedance materials placed behind the sample are measured [1,2]. The specific internal energy and specific volume are calculated from the measured p(u) release curve which corresponds to the Riemann integral. This way is not quite suitable for experiments with beam techniques where the incident shock waves are not well reproducible. The thick foil method [3] provides a few experimental points on the isentrope in one shot. When a higher shock impedance foil is placed on the surface of the material studied, the release phase occurs by steps, whose durations correspond to that for the shock wave to go back and forth in the foil. The velocity during the different steps, connected with the knowledge of the Hugoniot of the foil, allows us to determine a few points on the isentropic unloading curve. However, the method becomes insensitive when the low pressure range of vaporization is reached in the course of the unloading. The isentrope in this region can be measured by recording the smooth acceleration of a thin witness plate foil. With the mass of the foil known, measurements of the foil acceleration will give us the vapor pressure.

More Details

International Remote Monitoring Project Embalse Nuclear Power Station, Argentina Embalse Remote Monitoring System

Schneider, Sigfried L.

The Autoridad Regulatoria Nuclear of Argentina (ARN), the International Atomic Energy Agency (IAEA), ABACC, the US Department of Energy, and the US Support Program POTAS, cooperated in the development of a Remote Monitoring System for nuclear nonproliferation efforts. This system was installed at the Embalse Nuclear Power Station last year to evaluate the feasibility of using radiation sensors in monitoring the transfer of spent fuel from the spent fuel pond to dry storage. The key element in this process is to maintain continuity of knowledge throughout the entire transfer process. This project evaluated the fundamental design and implementation of the Remote Monitoring System in its application to regional and international safeguard efficiency. New technology has been developed to enhance the design of the system to include storage capability on board sensor platforms. This evaluation has led to design enhancements that will assure that no data loss will occur during loss of RF transmission of the sensors.

More Details

Tailorable, Visible Light Emission From Silicon Nanocrystals

Applied Physics Letters

Wilcoxon, Jess P.

J. P. Wilcoxon and G. A. Samara Crystalline, size-selected Si nanocrystals in the size range 1.8-10 nm grown in inverse micellar cages exhibit highly structured optical absorption and photoluminescence (PL) across the visible range of the spectrum. The most intense PL for the smallest nanocrystals produced This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. to induce a useful level of visible photoluminescence (PL) from silicon (Si). The approaches understood. Visible PL has been observed from Si nanocrystals, or quantum dots, produced by a variety of techniques including aerosols,2 colloids,3 and ion implantation.4 However, all of The optical absorption spectra of our nanocrystals are much richer in spectral features spectrum of bulk Si where the spectral features reflect the details of the band structure shown in nanocrystals estimated to have a Si core diameter of 1-2 nm. These measured quantum those in the spectrum of bulk Si in Fig. 1 are striking indicating that nanocrystals of this size 8-Room temperature PL results on an HPLC size-selected, purified 2 nm nanocrystals but blue shifted by -0.4 eV due to quantum confinement. Excitation at 245 nm yields the PL shows the PL spectrum for a similar sample excited at 490 nm (2.53 eV) trapped excitons at the surface of Si nanocrystals. The excitons are obtained for dimer bonds 1.8- 10 nm. These nanocrystals retain bulk-like optical absorption and an indirect bandgap Figure 1. The absorption spectrum of d = 2 nm Si nanocrystals compared to that of bulk7 Si. Figure 2. The extinction and PL (excitation at 490 nm) spectra ford= 8-10 nm Si nanocrystals.

More Details

Oxygen Implant Isolation of n-GaN Field-Effect Transistor Structures

Journal of Vacuum Science Technology B

Baca, Albert G.

Multiple-energy (30-325 keV) O{sup +} implantation into GaN field-effect transistor structures (n {approximately} 10{sup 18} cm{sup {minus}3}, 3000 {angstrom} thick) can produce as-implanted sheet resistances of 4 x 10{sup 12} {Omega}/{open_square}, provided care is taken to ensure compensation of the region up to the projected range of the lowest energy implant. The sheet resistance remains above 10{sup 7} {Omega}/{open_square} to annealing temperatures of {approximately} 650 C and displays an activation energy of 0.29 eV. No diffusion of the implanted oxygen was observed for anneals up to 800 C.

More Details

Investigation of Oxidative Degradation in Polymers Using (17)O NMR Spectroscopy

Macromolecules

Alam, Todd M.

The thermal oxidation of pentacontane (C{sub 50}H{sub 102}), and of the homopolymer polyisoprene, has been investigated using {sup 17}O NMR spectroscopy. By performing the oxidation using {sup 17}O labeled O{sub 2} gas, it is possible to easily identify degradation products, even at relatively low concentrations. It is demonstrated that details of the degradation mechanism can be obtained from analysis of the {sup 17}O NMR spectra as a function of total oxidation. Pentacontane reveals the widest variety of reaction products, and exhibits changes in the relative product distributions with increasing O{sub 2} consumption. At low levels of oxygen incorporation, peroxides are the major oxidation product, while at later stages of degradation these species are replaced by increasing concentrations of ketones, alcohols, carboxylic acids and esters. Analyzing the product distribution can help in identification of the different free-radical decomposition pathways of hydroperoxides, including recombination, proton abstraction and chain scission, as well as secondary reactions. The {sup 17}O NMR spectra of thermally oxidized polyisoprene reveal fewer degradation functionalities, but exhibit an increased complexity in the type of observed degradation species due to structural features such as unsaturation and methyl branching. Alcohols and ethers formed from hydrogen abstraction and free radical termination.

More Details

Molecular Dynamics Simulation of the Structure and Properties of Lithium Phosphate Glasses

Science

Liang, Jian-Jie; Cygan, Randall T.; Alam, Todd M.

A new forcefield model was developed for modeling phosphate materials that have many important applications in the electronics and biomedical industries. Molecular dynamics simulations of a series of lithium phosphate glass compositions were performed using the new forcefield model. A high concentration of three member rings (P{sub 3}O{sub 3}) was found in the glass of intermediate composition (0.2 Li{sub 2}O {center_dot} 0.8 P{sub 2}O{sub 5}) that corresponds to the minimum in the glass transition temperature curve for the compositional series.

More Details

Eddy-Current Testing of Welded Stainless Steel Storage Containers to Verify Integrity and Identity

Tolk, Keith M.

An eddy-current scanning system is being developed to allow the International Atomic Energy Agency (IAEA) to verify the integrity of nuclear material storage containers. Such a system is necessary to detect attempts to remove material from the containers in facilities where continuous surveillance of the containers is not practical. Initial tests have shown that the eddy-current system is also capable of verifying the identity of each container using the electromagnetic signature of its welds. The DOE-3013 containers proposed for use in some US facilities are made of an austenitic stainless steel alloy, which is nonmagnetic in its normal condition. When the material is cold worked by forming or by local stresses experienced in welding, it loses its austenitic grain structure and its magnetic permeability increases. This change in magnetic permeability can be measured using an eddy-current probe specifically designed for this purpose. Initial tests have shown that variations of magnetic permeability and material conductivity in and around welds can be detected, and form a pattern unique to the container. The changes in conductivity that are present around a mechanically inserted plug can also be detected. Further development of the system is currently underway to adapt the system to verifying the integrity and identity of sealable, tamper-indicating enclosures designed to prevent unauthorized access to measurement equipment used to verify international agreements.

More Details

Plasma Texturing of Silicon Solar Cells

Ruby, Douglas S.

Surface texture promotes enhanced light absorption in Si solar cells. The quality of lower cost multicrystalline-silicon (mc-Si) has increased to the point that its cell performance is close to that of single c-Si cells, with the major difference resulting from the inability to texture mc-Si affordably. This has reduced the cost-per-watt advantage of mc-Si. Surface texturing aimed at enhanced absorption in Si has been historically obtained by creating multimicrometer-sized pyramids using anisotropic wet etchants on single-crystalline silicon that take advantage of its single crystalline orientation. Since the surface feature sizes are several times the length of the incident solar wavelengths involved, the optical analysis of the reflected and absorbed light can be understood using geometrical optics. Geometrical textures reduce reflection and improve absorption by double-bounce and oblique light coupling into the semiconductor. However, geometrical texturing suffers from several disadvantages that limit its effectiveness. Some of these are listed below: (a) Wet-chemical anisotropic etching used to form random pyramids on <100> crystal orientation is not effective in the texturing of low-cost multicrystalline wafers, (b) Anti-reflection films deposited on random features to reduce reflection have a resonant structure limiting their effectiveness to a narrow range of angles and wavelengths. Various forms of surface texturing have been applied to mc-Si in research, including laser-structuring, mechanical grinding, porous-Si etching, and photolithographically defined etching. However, these may be too costly to ever be used in large-scale production. A Japanese firm has reported the development of an RIE process using Cl{sub 2} gas, which textures multiple wafers per batch, making it attractive for mass-production [1]. Using this process, they have produced a 17.1% efficient 225-cm{sup 2} mc-Si cell, which is the highest efficiency mc-Si cell of its size ever reported. This proves that RIE texturing does not cause performance-limiting damage to Si cells. In this paper, we will discuss an RIE texturing process that avoids the use of toxic and corrosive Cl{sub 2} gas.

More Details

Strength of Polysilicon for MEMS Devices

Lavan, David A.

The safe, secure and reliable application of Microelectromechanical Systems (MEMS) devices requires knowledge about the distribution in material and mechanical properties of the small-scale structures. A new testing program at Sandia is quantifying the strength distribution using polysilicon samples that reflect the dimensions of critical MEMS components. The strength of polysilicon fabricated at Sandia's Microelectronic Development Laboratory was successfully measured using samples 2.5 microns thick, 1.7 microns wide with lengths between 15 and 25 microns. These tensile specimens have a freely moving hub on one end that anchors the sample to the silicon die and allows free rotation. Each sample is loaded in uniaxial tension by pulling laterally with a flat tipped diamond in a computer-controlled Nanoindenter. The stress-strain curve is calculated using the specimen cross section and gage length dimensions verified by measuring against a standard in the SEM.

More Details

Dialkylenecarbonate-Bridged Polysilsesquioxanes. Hybrid Organic-Inorganic Sol-Gels with a Thermally Labile Bridging Group

Loy, Douglas A.

In this paper, we introduce a new approach for altering the properties of bridged polysilsesquioxane xerogels using post-processing mobilization of the polymeric network. The bridging organic group contains latent functionalities that can be liberated thermally, photochemically, or by chemical means after the gel has been processed to a xerogel. These modifications can produce changes in density, volubility, porosity, and or chemical properties of the material. Since every monomer possesses two latent functional groups, the technique allows for the introduction of high levels of functionality in hybrid organic-inorganic materials. Dialkylenecarbonate-bridged polysilsesquioxane gels were prepared by the sol-gel polymerization of bis(triethoxysilylpropyl)carbonate (1) and bis(triethoxysilylisobutyl)-carbonate (2). Thermal treatment of the resulting non-porous xerogels and aerogels at 300-350 C resulted in quantitative decarboxylation of the dialkylenecarbonate bridging groups to give new hydroxyalkyl and olefinic substituted polysilsesquioxane monolithic xerogels and aerogels that can not be directly prepared through direct sol-gel polymerization of organotrialkoxysilanes.

More Details

Design of a High-Throughput Plasma-Processing System

Ruby, Douglas S.

Sandia National Laboratories has demonstrated significant performance gains in crystalline silicon solar cell technology through the use of plasma-processing for the deposition of silicon nitride by Plasma Enhanced Chemical Vapor Deposition (PECVD), plasma-hydrogenation of the nitride layer, and reactive-ion etching of the silicon surface prior to the deposition to decrease the reflectivity of the surface. One of the major problems of implementing plasma processing into a cell production line is the batch configuration and/or low throughput of the systems currently available. This report describes the concept of a new in-line plasma processing system that could meet the industrial requirements for a high-throughput and cost effective solution for mass production of solar cells.

More Details

Characterization of Si Nanostructured Surfaces

Gee, James M.

Surface texturing of Si to enhance absorption particularly in the IR spectral region has been extensively investigated. Previous research chiefly examined approaches based on geometrical optics. These surface textures typically consist of pyramids with dimensions much larger than optical wavelengths. We have investigated a physical optics approach that relies on surface texture features comparable to, or smaller than, the optical wavelengths inside the semiconductor material. Light interaction at this are strongly dependent on incident polarization and surface profile. Nanoscale textures can be tuned for either narrow band, or broad band absorptive behavior. Lowest broadband reflection has been observed for triangular profiles with linewidths significantly less than 100 nm. Si nanostructures have been integrated into large ({approximately}42 cm{sup 2}) area solar cells, Internal quantum efficiency measurements in comparison with polished and conventionally textured cells show lower efficiency in the UV-visible (350-680 mu), but significantly higher IR (700-1200 nm) efficiency.

More Details

An Integrated Surface Acoustic Wave-Based Chemical Microsensor Array for Gas-Phase Chemical Analysis Microsystems

Heller, Edwin J.

This paper describes preliminary results in the development of an acoustic wave (SAW) microsensor array. The array is based on a novel configuration that allows for three sensors and a phase reference. Two configurations of the integrated array are discussed: a hybrid multichip-module based on a quartz SAW sensor with GaAs microelectronics and a fully monolithic GaAs-based SAW. Preliminary data are also presented for the use of the integrated SAW array in a gas-phase chemical micro system that incorporates microfabricated sample collectors and concentrators along with gas chromatography (GC) columns.

More Details

SH-SAW Sensor Platform for Chemical Detection in Aqueous Solutions

Cernosek, Richard W.

Chemically sensitive polymers coated on delay lines utilizing shear horizontal surface acoustic wave (SH-SAW) sensors are investigated for the detection of organic analytes in liquid environments. The SH-SAW sensor platform was designed and fabricated on 36{degree} rotated Y-cut LiTaO{sub 3}. By depositing a SiO{sub 2} dielectric layer over the entire device prior to applying the polymer film, partial electrical passivation of the interdigital transducers (IDT) is obtained while increasing the mass sensitivity of the device. Changes in the mechanical properties of the chemically sensitive polymer materials were clearly detectable through a frequency shift at least one order of magnitude larger than that of a coated-quartz crystal resonator (QCR) in a similar experiment.

More Details

Nucleation and Growth During Faceting of the Platinum Covered W(111) Surface

Kellogg, Gary L.

Low energy electron microscopy (LEEM) and scanning tunneling microscopy (STM) have been used to investigate the faceting of W(111) as induced by Pt. The atomically rough W(111) surface, when fully covered with a monolayer film of Pt and annealed to temperatures higher than {approximately}750 K, experiences a significant morphological restructuring: the initially planar surface undergoes a faceting transition and forms three-sided pyramids with {l_brace}211{r_brace} faces. When Pt is dosed onto the heated surface, the transition from planar to faceted structure proceeds through the nucleation and growth of spatially separated faceted regions, as shown by LEEM. STM reveals the atomic structure of the partially faceted surface, with large planar regions, dotted by clusters of pyramids of various sizes.

More Details

Development of Test Facility for Structural Evaluation of Composite Rotor Hubs

Dorrell, Larry R.

The rotorcraft industry is constantly evaluating new types of lightweight composite materials that not only enhance the safety and reliability of rotor components, but also improve performance and extend operating life as well. The tests required for these evaluations are typically quite complex requiring massive test fixtures, in many cases, along with multiple actuators for loading test articles at various points simultaneously. This paper discusses the background for development of the facility, as well as hardware and overall system design and implementation. Additional topics that are covered include data acquisition, implementation of nondestructive inspection techniques during the test process, and some results from the initial test series performed in the facility.

More Details

A Modular Telerobot Control System for Accident Response

Anderson, Robert J.

The Accident Response Mobile Manipulator System (ARMMS) is a teleoperated emergency response vehicle that deploys two hydraulic manipulators, five cameras, and an array of sensors to the scene of an incident. It is operated from a remote base station that can be situated up to four kilometers away from the site. Recently, a modular telerobot control architecture called SMART (Sandia's Modular Architecture for Robotic and Teleoperation) was applied to ARMMS to improve the precision, safety, and operability of the manipulators on board. Using SMART, a prototype manipulator control system was developed in a couple of days, and an integrated working system was demonstrated within a couple of months. New capabilities such as camera teleoperation, autonomous tool changeout and dual manipulator control have been incorporated. The final system incorporates twenty-two separate modules and implements eight different behavior modes. This paper describes the integration of SMART into the ARMMS system.

More Details

A Practical Approach for Integrating Automatically Designed Fixtures with Automated Assembly Planning

Galpin, Terri

This paper presents a practical approach for integrating automatically designed fixtures with automated assembly planning. Product assembly problems vary widely; here the focus is on assemblies that are characterized by a single base part to which a number of smaller parts and subassemblies are attached. This method starts with three-dimension at CAD descriptions of an assembly whose assembly tasks require a fixture to hold the base part. It then combines algorithms that automatically design assembly pallets to hold the base part with algorithms that automatically generate assembly sequences. The designed fixtures rigidly constrain and locate the part, obey task constraints, are robust to part shape variations, are easy to load, and are economical to produce. The algorithm is guaranteed to find the global optimum solution that satisfies these and other pragmatic conditions. The assembly planner consists of four main elements: a user interface, a constraint system, a search engine, and an animation module. The planner expresses all constraints at a sequencing level, specifying orders and conditions on part mating operations in a number of ways. Fast replanning enables an interactive plan-view-constrain-replan cycle that aids in constrain discovery and documentation. The combined algorithms guarantee that the fixture will hold the base part without interfering with any of the assembly operations. This paper presents an overview of the planners, the integration approach, and the results of the integrated algorithms applied to several practical manufacturing problems. For these problems initial high-quality fixture designs and assembly sequences are generated in a matter of minutes with global optimum solutions identified in just over an hour.

More Details

A Framework for Geometric Reasoning About Human Figures and Factors in Assembly Processes

Galpin, Terri

Automatic assembly sequencing and visualization tools are valuable in determining the best assembly sequences, but without Human Factors and Figure Models (HFFMs) it is difficult to evaluate or visualize human interaction. In industry, accelerating technological advances and shorter market windows have forced companies to turn to an agile manufacturing paradigm. This trend has promoted computerized automation of product design and manufacturing processes, such as automated assembly planning. However, all automated assembly planning software tools assume that the individual components fly into their assembled configuration and generate what appear to be perfectly valid operations, but in reality some operations cannot physically be carried out by a human. For example, the use of a ratchet may be reasoned feasible for an assembly operation; however, when a hand is placed on the tool the operation is no longer feasible, perhaps because of inaccessibility, insufficient strength or human interference with assembly components. Similarly, human figure modeling algorithms may indicate that assembly operations are not feasible and consequently force design modifications, however, if they had the capability to quickly generate alternative assembly sequences, they might have identified a feasible solution. To solve this problem, HFFMs must be integrated with automated assembly planning which allows engineers to quickly verify that assembly operations are possible and to see ways to make the designs even better. This paper presents a framework for integrating geometry-based assembly planning algorithms with commercially available human figure modeling software packages. Experimental results to selected applications along with lessons learned are presented.

More Details

Sorption Energy Maps of Clay Mineral Surfaces

American Mineralogist

Cygan, Randall T.

A molecular-level understanding of mineral-water interactions is critical for the evaluation and prediction of the sorption properties of clay minerals that may be used in various chemical and radioactive waste disposal methods. Molecular models of metal sorption incorporate empirical energy force fields, based on molecular orbital calculations and spectroscopic data, that account for Coulombic, van der Waals attractive, and short-range repulsive energies. The summation of the non-bonded energy terms at equally-spaced grid points surrounding a mineral substrate provides a three dimensional potential energy grid. The energy map can be used to determine the optimal sorption sites of metal ions on the exposed surfaces of the mineral. By using this approach, we have evaluated the crystallographic and compositional control of metal sorption on the surfaces of kaolinite and illite. Estimates of the relative sorption energy and most stable sorption sites are derived based on a rigid ion approximation.

More Details

How the K(d) Approach Undermines Groundwater Cleanup

Ground Water

Brady, Patrick V.

Environmental scientists have long appreciated that the distribution coefficient (the ''K{sub d}'' or ''constant K{sub d}'') approach predicts the partitioning of heavy metals between sediment and groundwater inaccurately; nonetheless, transport models applied to problems of environmental protection and groundwater remediation almost invariably employ this technique. To examine the consequences of this practice, we consider transport in one dimension of Pb and other heavy metals through an aquifer containing hydrous ferric oxide, onto which heavy metals sorb strongly. We compare the predictions of models calculated using the K{sub d} approach to those given by surface complexation theory, which is more realistic physically and chemically. The two modeling techniques give qualitatively differing results that lead to divergent cleanup strategies. The results for surface complexation theory show that water flushing is ineffective at displacing significant amounts of Pb from the sorbing surface. The effluent from such treatment contains a ''tail'' of small but significant levels of contamination that persists indefinitely. Subsurface zones of Pb contamination, furthermore, are largely immobile in flowing groundwater. These results stand in sharp contrast to the predictions of models constructed using the k{sub d} approach, yet are consistent with experience in the laboratory and field.

More Details

Differentiation of Chemical Components in a Binary Solvent Vapor Mixture Using Carbon/Polymer Composite-Based Chemiresistors

Analytical Chemistry

Patel, Sanjay V.

We demonstrate a ''universal solvent sensor'' constructed from a small array of carbon/polymer composite chemiresistors that respond to solvents spanning a wide range of Hildebrand volubility parameters. Conductive carbon particles provide electrical continuity in these composite films. When the polymer matrix absorbs solvent vapors, the composite film swells, the average separation between carbon particles increases, and an increase in film resistance results, as some of the conduction pathways are broken. The adverse effects of contact resistance at high solvent concentrations are reported. Solvent vapors including isooctane, ethanol, dlisopropyhnethylphosphonate (DIMP), and water are correctly identified (''classified'') using three chemiresistors, their composite coatings chosen to span the full range of volubility parameters. With the same three sensors, binary mixtures of solvent vapor and water vapor are correctly classified, following classification, two sensors suffice to determine the concentrations of both vapor components. Polyethylene vinylacetate and polyvinyl alcohol (PVA) are two such polymers that are used to classify binary mixtures of DIMP with water vapor; the PVA/carbon-particle-composite films are sensitive to less than 0.25{degree}A relative humidity. The Sandia-developed VERI (Visual-Empirical Region of Influence) technique is used as a method of pattern recognition to classify the solvents and mixtures and to distinguish them from water vapor. In many cases, the response of a given composite sensing film to a binary mixture deviates significantly from the sum of the responses to the isolated vapor components at the same concentrations. While these nonlinearities pose significant difficulty for (primarily) linear methods such as principal components analysis, VERI handles both linear and nonlinear data with equal ease. In the present study the maximum speciation accuracy is achieved by an array containing three or four sensor elements, with the addition of more sensors resulting in a measurable accuracy decrease.

More Details

Temperature-Independent Switching Rates for a Random Telegraph Signal in a Silicon Metal-Oxide-Semiconductor Field-Effect Transistor at Low Temperatures

Applied Physics Letters

Fleetwood, Daniel M.

We have observed discrete random telegraph signals (RTS'S) in the drain voltages of three, observed above 30 K were thermally activated. The switching rate for the only RTS observed below 30 K was thermally activated above 30 K but temperature-independent below 10 K. To our knowledge, this cross-over from thermal activation to tunneling behavior has not been previously observed for RTS's Metal-oxide-semiconductor field-effect transistors (MCEWETS) often exhibit relatively large levels of low-frequency (1/fl noise) [1,2]. Much evidence suggests that this noise is related to the capture all cases, switching rates have been thermally activated, often with different activation energies for capture and/or emission is accompanied by lattice relaxation. Though thermally activated behavior has sufficiently low temperatures [7,9]. While not observed in MOSFETS, cross-over from thermal activation to configurational tunneling has been observed for RTS's in junctions [13]. drain voltage was observed to randomly switch between two discrete levels, designated as Vup and Vdn, similar to RTS's reported by others [2,7'- 11 ]. We have characterized six RTS `S for temperatures above 30 K where thermally activated switching rates are observed. The properties of five of these have been the trap, i.e., the mean time a captured charge carrier spends in the trap before it is emitted. Similarly, we identify the mean time in the low resistance state ( trup in state Vup) as the capture time rc. F@ure 1 shows a typical time trace of the drain-voltage fluctuation &d(t)= Vd(t)+Vd>. This indicate that both the mean capture and emission times become independent of Tat low temperatures and where a= capture or emission, is temperature independent. The solid curve in Figure 3(a) (mean capture time) was obtained using a weighted nonlinear charge carriers are not in thermal equilibrium with the lattice, i.e., that while the lattice is being cooled Instead, we believe that the transition from thermally activated to temperature-independent switching rates is associated with a lattice relaxation mechanism similar to that observed in metal- insulator-metal tunnel junctions [13]. Capture and emission of carriers are mediated by lattice relaxation, which proceeds via a thermally activated process at higher temperatures and a configurational tunneling electron capture rate depended on both lattice and electron temperatures while the emission rate Fkure 2. Arrhenius plot showing the thermally-activated behavior of both the mean capture (triangle) and emission (square) times of the RTS for temperatures above 20 K'.

More Details

Cooperation Between the Russia Federation and the United States to Enhance the Existing Nuclear-Material Protection, Control, and Accounting Systems at Mayak Production Association

James, L.T.

The Ministry of the Russian Federation for Atomic Energy (MINATOM) and the US Department of Energy (DOE) are engaged in joint, cooperative efforts to reduce the likelihood of nuclear proliferation by enhancing Material Protection, Control and Accounting (MPC&A) systems in both countries. Mayak Production Association (Mayak) is a major Russian nuclear enterprise within the nuclear complex that is operated by lylINATOM. This paper describes the nature, scope, and status of the joint, cooperative efforts to enhance existing MPC&A systems at Mayak. Current cooperative efforts are focused on enhancements to the existing MPC&A systems at two of the plants operated by Mayak that work with proliferation-sensitive nuclear materials.

More Details

Evaluation of a Distributed Fiber-Optic Temperature Sensor for Logging Wellbore Temperature at the Beowawe and Dixie Valley Geothermal Fields

Krumhansl, James L.

A distributed temperature sensor (DTS) system, utilizing Raman backscattering to measure temperatures of optical fiber, has recently been installed in production wells at the Beowawe and Dixie Valley, NV, geothermal fields. The system has the potential to reduce the cost and complexity of acquiring temperature logs. However, the optical transmission of the initial fibers installed at Beawawe degraded over several months, resulting in temperature errors. Optical transmission spectra of the failed fibers indicate hydroxide contamination via hydrogen diffusion as a possible failure mechanism. Additional fibers with coatings designed to resist hydrogen diffusion were installed and have maintained their optical transmission over several months in the 340-360 F Beowawe wells. The same fibers installed in a 470 F Dixie Valley well rapidly failed. Possible methods to prevent fiber degradation include encasing the fiber in metallic buffer layer that resists hydrogen diffusion. Additional methods to correct temperature errors include using additional optical sources to measure fiber losses at the operating wavelengths. Although the DTS system is expected to have one degree F accuracy, we have observed an average accuracy of five degrees. The fiber connections appear to be the uncertainty source. Using connectors with greater stability should restore accuracy.

More Details

Optical Determination of Interface Roughness in Multilayered Semiconductor Structures

Blum, O.; Donchev, V.; Mazilu, M.; Miller, A.

We have developed a new approach (the LQR method) for calculating the reflectivity and transmission spectra of a multilayer optical material with N interfaces, as an alternative to the matrix method. The approach allows the inclusion of the effects of interface roughness by introducing a ''rough'' element between adjacent layers. For this purpose we have developed an empirical model, which describes the effect of interface roughness on an optical beam passing through or being reflected from an interface. An assessment of the interface roughness of a multilayer structure was carried out by fitting the experimental reflectivity spectrum of GaAs/AlGaAs multiple quantum well samples with and without oxidation of the barrier layers. The refractive index and the thickness of the oxidized layers were also obtained from the fit.

More Details

Reproducibility Data on SUMMiT

Limary, Siviengxay

SUMMiT (Sandia Ultra-planar Multi-level MEMS Technology) at the Sandia National Laboratories' MDL (Microelectronics Development Laboratory) is a standardized MEMS (Microelectromechanical Systems) technology that allows designers to fabricate concept prototypes. This technology provides four polysilicon layers plus three sacrificial oxide layers (with the third oxide layer being planarized) to enable fabrication of complex mechanical systems-on-a-chip. Quantified reproducibility of the SUMMiT process is important for process engineers as well as designers. Summary statistics for critical MEMS technology parameters such as film thickness, line width, and sheet resistance will be reported for the SUMMiT process. Additionally, data from Van der Pauw test structures will be presented. Data on film thickness, film uniformity and critical dimensions of etched line widths are collected from both process and monitor wafers during manufacturing using film thickness metrology tools and SEM tools. A standardized diagnostic module is included in each SWiT run to obtain post-processing parametric data to monitor run-to-run reproducibility such as Van der Pauw structures for measuring sheet resistance. This characterization of the SUMMiT process enables design for manufacturability in the SUMMiT technology.

More Details

Landmine Detection Using Backscattered X-Ray Radiography

Wehlburg, Joseph C.

The implementation of a backscattered x-ray landmine detection system has been demonstrated in laboratories at both Sandia National Laboratories (SNL) and the University of Florida (UF) The next step was to evaluate the modality by assembling a system for fieldwork and to evaluate the systems performance with real landmines. To assess the system's response to a variety of objects, buried simulated plastic and metal antitank landmines, surface simulated plastic antipersonnel landmines, and surface metal fragments were used as targets for the field test. The location of the test site was an unprepared field at SNL. The tests conducted using real landmines were held at UF using various burial depths. The field tests yielded the same levels of discrimination between soil and landmines that had been detected in laboratory experiments. The tests on the real landmines showed that the simulated landmines were a good approximation. The real landmines also contained internal features that would allow not only the detection of the landmines, but also the identification of them.

More Details

Security Services Discovery by ATM Endsystems

Tarman, Thomas D.

This contribution proposes strawman techniques for Security Service Discovery by ATM endsystems in ATM networks. Candidate techniques include ILMI extensions, ANS extensions and new ATM anycast addresses. Another option is a new protocol based on an IETF service discovery protocol, such as Service Location Protocol (SLP). Finally, this contribution provides strawman requirements for Security-Based Routing in ATM networks.

More Details

Australia Remote Monitoring Project (ARMP)

Atencio, Carmella; Busse, James; Carlson, John; Dickerson, Dawn; Ffrost, Brian; Gaillour, Marsha; Glidewell, Don; Hill, John; Martinez, Robert; Monds, Patrick; Schoeneman, Barry; Smartt, Heidi A.; Sorokowski, Donald

As a result of the Safeguards Arrangement between the US Department of Energy (DOE) and the Australian Safeguards and Non-Proliferation Office (ASNO) concerning international safeguards R and D, ASNO and Sandia National Laboratories (SNL) have agreed to jointly develop a remote monitoring system at the HIFAR reactor, Lucas Heights, Australia. The HIFAR reactor is a high flux research reactor operated by the Australian Nuclear Science and Technology Organization (ANSTO). The objective of the system is to remotely monitor the entire Material Balance Area (MBA) AS-A to include: fresh fuel the reactor core; spent fuel in the cropping/irradiation pond, international pond, dry spent fuel storage facility, and Dounreay flasks; and spent fuel during designated transport. The purpose is to reduce on-site inspection effort at the HIFAR reactor.

More Details

High-Efficiency, Low-Voltage, Compound Semiconductor Devices for Microwave and MM-Wave Power Amplifiers

Sloan, Lynn R.

Improvements in the last decade in InP materials growth, device processing techniques, characterization, and circuit design have enabled solid-state power performance through 122 GHz. Although originally targeted for low-noise and power performance at mm-wave frequencies (>30 GHz), InP HEMTs could become the preferred device for frequencies as low as 800 MHz. This investment has benefited the microwave frequency regime with higher efficiency and power densities at lower operating voltages. State-of-the-art microwave performance at lower operating voltage provides a path to smaller, lighter-weight systems in the battery operated arena of commercial and defense electronics. This paper describes an InP HEMT technology being investigated for many power and low-noise amplifier applications from UHF to W-band frequencies. Specifically the technology demonstrated 640mW/mm power density, 27 dB gain, and 84% power-added efficiency at L-band with a bias of 3.0 volts. Based on the author's literature search, this is a record efficiency at L-band with an operating voltage of less than 5 volts.

More Details

Mobile Surveillance and Monitoring Robots

Shipers, Larry R.

Long-term nuclear material storage will require in-vault data verification, sensor testing, error and alarm response, inventory, and maintenance operations. System concept development efforts for a comprehensive nuclear material management system have identified the use of a small flexible mobile automation platform to perform these surveillance and maintenance operations. In order to have near-term wide-range application in the Complex, a mobile surveillance system must be small, flexible, and adaptable enough to allow retrofit into existing special nuclear material facilities. The objective of the Mobile Surveillance and Monitoring Robot project is to satisfy these needs by development of a human scale mobile robot to monitor the state of health, physical security and safety of items in storage and process; recognize and respond to alarms, threats, and off-normal operating conditions; and perform material handling and maintenance operations. The system will integrate a tool kit of onboard sensors and monitors, maintenance equipment and capability, and SNL developed non-lethal threat response technology with the intelligence to identify threats and develop and implement first response strategies for abnormal signals and alarm conditions. System versatility will be enhanced by incorporating a robot arm, vision and force sensing, robust obstacle avoidance, and appropriate monitoring and sensing equipment.

More Details

Novel Neo-Pentoxide Precursors for MOCVD Thin Films of TiO(2) and ZrO(2).[1]

Advance Materials Chemical Vapor Deposition

Boyle, Timothy

Two novel Group IV precursors, titanium (IV) neo-pentoxide, [Ti({mu}-ONep)(ONep){sub 3}]{sub 2} (l), and zirconium (IV) neo-pentoxide, [Zr({mu}-ONep)(ONep){sub 3}]{sub 2} (2), were reported to possess relatively high volatility at low temperatures. These compounds were therefore investigated as MOCVD precursors using a lamp-heated cold-wall CVD reactor and direct sublimation without carrier gas. The ONep derivatives proved to be competitive precursors for the production of thin films of the appropriate MO{sub 2} (M = Ti or Zr) materials in comparison to other metallo-organic precursors. Compound 1 was found to sublime at 120 C with a deposition rate of {approximately}0.350 {mu}m/min onto a substrate at 330 C forming the anatase phase with < 1% residual C found in the final film. Compound 2 was found to sublime at 160 C and deposited as crystalline material at 300 C with < 1% residual C found in the final film. A comparison to standard alkoxide and {beta}-diketonates is presented where appropriate.

More Details

The Effect of Atmosphere on the Interdiffusion of Silver and Palladium

Journal of the American Ceramics Society

Garino, Terry J.

Conductor inks containing silver and palladium, used in ceramic co-fired circuits, sometimes undergo an anomalously large expansion during heating in the temperature range where interdiffusion occurs. Therefore, the interdiffusion of silver and palladium was studied during heating in both air and argon using both powder and foil samples. Measurements on a powder compact made of a mixture of Ag and Pd (80% Ag) particles indicated that a very rapid expansion occurred between 375 and 400 C when heated in air but only a slight expansion occurred in Ar. A pre-alloyed powder with the same composition did not expand during heating. In situ high temperature x-ray diffraction studies indicated that both powders oxidized during heating in air, with the mixture oxidizing more and that interdiffusion occurred between 300 and 500 C. Microstructural examination indicated that larger particles with internal pores had formed in the mixture heated in air to 375 C due to rearrangement during interdiffusion. A porous region much thicker than the original silver film formed on a palladium foil sample when it was heated in air, whereas in inert atmosphere pores formed only in the silver film, indicating a Kirkendall effect occurs in both cases. Based on these results, it was concluded that the expansion of the Ag-Pd powder mixture was due to interdiffusion in the presence of oxygen, not solely to the oxidation of the Pd.

More Details

Synthetic Multivariate Models to Accommodate Unmodeled Interfering Components During Quantitative Spectral Analyses

Applied Spectroscopy

Haaland, David M.

The analysis precision of any multivariate calibration method will be severely degraded if unmodeled sources of spectral variation are present in the unknown sample spectra. This paper describes a synthetic method for correcting for the errors generated by the presence of unmodeled components or other sources of unmodeled spectral variation. If the spectral shape of the unmodeled component can be obtained and mathematically added to the original calibration spectra, then a new synthetic multivariate calibration model can be generated to accommodate the presence of the unmodeled source of spectral variation. This new method is demonstrated for the presence of unmodeled temperature variations in the unknown sample spectra of dilute aqueous solutions of urea, creatinine, and NaCl. When constant-temperature PLS models are applied to spectra of samples of variable temperature, the standard errors of prediction (SEP) are approximately an order of magnitude higher than that of the original cross-validated SEPs of the constant-temperature partial least squares models. Synthetic models using the classical least squares estimates of temperature from pure water or variable-temperature mixture sample spectra reduce the errors significantly for the variable temperature samples. Spectrometer drift adds additional error to the analyte determinations, but a method is demonstrated that can minimize the effect of drift on prediction errors through the measurement of the spectra of a small subset of samples during both calibration and prediction. In addition, sample temperature can be predicted with high precision with this new synthetic model without the need to recalibrate using actual variable-temperature sample data. The synthetic methods eliminate the need for expensive generation of new calibration samples and collection of their spectra. The methods are quite general and can be applied using any known source of spectral variation and can be used with any multivariate calibration method.

More Details

Thermochemistry of YBa(2)Cu(3-x)M(x)O(y) (M=Ni,Zn)

Physica C

Rodriguez, Mark A.

Many studies have investigated the behavior of transition metal dopants in the YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} 123 superconductors. Much of this research has focused on the effects of metal ions such as Co, Fe, Zn, Ni when they are substituted for the copper ions at Cu(1) and Cu(2) sites, commonly referred to as the chain and plane sites, respectively. Trivalent ions such as Co{sup +3} and Fe{sup +3}have been shown to behave similarly in their substitution effects, displaying site preference on the Cu(1) site [3-8]. This site preference has been established with the use of techniques such as neutron diffraction and Moessbauer spectroscopy [4,5]. Thermogravimetry, electron diffraction, and analysis of lattice parameters as a function of dopant also yield results consistent with those of the structural studies with respect to the chain site preference of both Co and Fe [3,4,6-8]. The very fast convergence of a and b lattice parameters to that of the tetragonal structure, occurring at x = 0.3 Co dopant (i.e. YBa{sub 2}Cu{sub 2.7}Co{sub 0.3}O{sub 7{minus}{delta}}) for high-oxygen-content samples, coupled with information derived from diffuse scattering and oxidation behavior of these samples, has been described in detail by several authors in terms of the Co and Fe ions creating ''microchains'' at Cu(1) sites within the 123 compound [4,7-8]. The Cu(1) site dopants decrease T{sub c} at a rate of 2 to 5 K/at. %, varying to some extent with site preference [4,9].

More Details

InSitu X-Ray Diffraction Studies on Lithium-Ion Battery Cathodes

Doughty, Daniel H.

In this paper numerical simulations of Mach 10 air flow over a hollow cylinder flare are presented in comparison with recent experimental results. The numerical study is performed using a Direct Simulation Monte Carlo code and the experimental results were obtained in the ONERA R5Ch wind tunnel. The flow phenomena involved include shock wave boundary layer interaction in hypersonic laminar flow. An analysis of the requirements on the grid resolution, number of particle simulators and run time is performed. Measured and calculated surface properties including pressure and heat transfer are compared.

More Details

A Proposal for an Advanced Drilling System with Real-Time Diagnostics (Diagnostics-While-Drilling)

Finger, John T.

In this paper, we summarize the rationale for an advanced system called Diagnostics-While-Drilling (DWD) and describe its benefits, preliminary configuration, and essential characteristics. The central concept is a closed data circuit in which downhole sensors collect information and send it to the surface via a high-speed data link, where it is combined with surface measurements and processed through drilling advisory software. The driller then uses this information to adjust the drilling process, sending control signals back downhole with real-time knowledge of their effects on performance. We outline a Program Plan for DOE, university, and industry to cooperate in the development of DWD technology.

More Details

Finite State Machine Analysis of Remote Sensor Data

Brabson, John M.

The use of unattended monitoring systems for monitoring the status of high value assets and processes has proven to be less costly and less intrusive than the on-site inspections which they are intended to replace. However, these systems present a classic information overload problem to anyone trying to analyze the resulting sensor data. These data are typically so voluminous and contain information at such a low level that the significance of any single reading (e.g., a door open event) is not obvious. Sophisticated, automated techniques are needed to extract expected patterns in the data and isolate and characterize the remaining patterns that are due to undeclared activities. This paper describes a data analysis engine that runs a state machine model of each facility and its sensor suite. It analyzes the raw sensor data, converting and combining the inputs from many sensors into operator domain level information. It compares the resulting activities against a set of activities declared by an inspector or operator, and then presents the differences in a form comprehensible to an inspector. Although the current analysis engine was written with international nuclear material safeguards, nonproliferation, and transparency in mind, since there is no information about any particular facility in the software, there is no reason why it cannot be applied anywhere it is important to verify processes are occurring as expected, to detect intrusion into a secured area, or to detect the diversion of valuable assets.

More Details

Absorbance and Photoluminescence of Si, Ge, and MoS{sub 2} Nanoparticles Studied by Liquid Chromatography

Wilcoxon, Jess P.

The authors have successfully synthesized highly crystalline, size-selected indirect band-gap nanocrystals (NC) of Si, Ge and MoS{sub 2} in the size range 2-10 nm in inverse micelles and studied their optical absorption and photoluminescence (PL) properties using liquid chromatography. Room temperature, visible PL from these nanocrystals was demonstrated in the range 700-350 nm (1.8-3.5 eV). their experimental results are interpreted in terms of the corresponding electronic structure of the bulk materials and it is demonstrated that these nanocrystals retain bulk-like electronic character to sizes as small as 2 nm, but the absorbance energies are strongly blue-shifted by quantum confinement. The experimental results on Si-NCs are also compared to earlier work on Si clusters grown by other techniques and to the predictions of various model calculations. Currently, the wide variations in the theoretical predictions of the various models along with considerable uncertainties in experimental size determination for clusters less than 3-4 nm, make it difficult to select the best model.

More Details

Spiraling Edge: Fast Surface Reconstruction from Partially Organized Sample Points

Crossno, Patricia J.

Many applications produce three-dimensional points that must be further processed to generate a surface. Surface reconstruction algorithms that start with a set of unorganized points are extremely time-consuming. Sometimes, however, points are generated such that there is additional information available to the reconstruction algorithm. We present Spiraling Edge, a specialized algorithm for surface reconstruction that is three orders of magnitude faster than algorithms for the general case. In addition to sample point locations, our algorithm starts with normal information and knowledge of each point's neighbors. Our algorithm produces a localized approximation to the surface by creating a star-shaped triangulation between a point and a subset of its nearest neighbors. This surface patch is extended by locally triangulating each of the points along the edge of the patch. As each edge point is triangulated, it is removed from the edge and new edge points along the patch's edge are inserted in its place. The updated edge spirals out over the surface until the edge encounters a surface boundary and stops growing in that direction, or until the edge reduces to a small hole that is filled by the final triangle.

More Details

Visual Debugging of Visualization Software: A Case Study for Particle Systems

Crossno, Patricia J.

Visualization systems are complex dynamic software systems. Debugging such systems is difficult using conventional debuggers because the programmer must try to imagine the three-dimensional geometry based on a list of positions and attributes. In addition, the programmer must be able to mentally animate changes in those positions and attributes to grasp dynamic behaviors within the algorithm. In this paper we shall show that representing geometry, attributes, and relationships graphically permits visual pattern recognition skills to be applied to the debugging problem. The particular application is a particle system used for isosurface extraction from volumetric data. Coloring particles based on individual attributes is especially helpful when these colorings are viewed as animations over successive iterations in the program. Although we describe a particular application, the types of tools that we discuss can be applied to a variety of problems.

More Details

The Sandia/Arzamas-16 Magazine-to-Magazine Remote Monitoring Field Trial Evaluation

Barkanov, Boris; Blagin, Sergei; Croessmann, Dennis; Damico, Joe; Ehle, Steve; Nilsen, Curt

Sandia National Laboratories and the Russian Federal Nuclear Center-All Russian Research Institute for Experimental Physics (VNIIEF) (also known as Arzamas-16) are collaborating on ways to assure the highest standards of safety, security, and international accountability of fissile material. For these collaborations, sensors and information technologies have been identified as important in reaching these standards in a cost-effective manner. Specifically, Sandia and VNIIEF have established a series of remote monitoring field trials to provide a mechanism for joint research and development on storage monitoring systems. These efforts consist of the ''Container-to-Container'', ''Magazine-to-Magazine'', and ''Facility-to-Facility'' field trials. This paper will describe the evaluation exercise Sandia and VNIIEF conducted on the Magazine-to-Magazine systems. Topics covered will include a description of the evaluation philosophy, how the various sensors and system features were tested, evaluation results, and lessons learned.

More Details

An Investigation of Molecular Templating in Amorphous Silicas by Cross-Polarization NMR Spectroscopy

Journal of Physcial Chemistry

Assink, Roger A.

The precise pore sizes defined by crystalline zeolite lattices have led to intensive research on zeolite membranes. Unfortunately zeolites have proven to be extremely difficult to prepare in a defect-free thin film form needed for membrane flux and selectivity. We introduce tetrapropylammonium (TPA), a structure-directing agent for zeolite ZSM-5, into a silica sol and exploit the development of high solvation stresses to create templated amorphous silicas with pore apertures comparable in size to those of ZSM-5. Silicon and carbon NMR experiments were performed to evaluate the efficacy of our templating approach. The {sup 29}Si NMR spectrum of the silica matrix was observed by an intermolecular cross-polarization experiment involving the {sup 1}H nuclei of TPA and the {sup 29}Si nuclei in the silica matrix. The efficiency of the cross-polarization interaction was used to investigate the degree to which the matrix formed a tight cage surrounding the template molecule. Bulk xerogels, prepared by gelation and slow drying of the corresponding sols, exhibited only weak interactions between the two sets of nuclei. Thin film xerogels, where drying stresses are greater, exhibited significantly increased interactions. Intramolecular cross-polarization experiments between the {sup 1}H and {sup 13}C nuclei of the template molecule demonstrated that much of the increased efficiency was a result of reduced rotational mobility of the TPA molecule.

More Details

Origin of Compact Triangular Islands in Metal-on-Metal Growth

Physical Review Letters

Bogicevic, Alexander

The microscopic origin of compact triangular islands on close-packed surfaces is identified using kinetic Monte Carlo simulations with energy barriers obtained from density-functional calculations. In contrast to earlier accounts, corner diffusion anisotropy is found to control the shape of compact islands at intermediate temperatures. We rationalize the correlation between the orientation of dendrites grown at low temperatures and triangular islands grown at higher temperatures, and explain why in some systems dendrites grow fat before turning compact.

More Details
Results 91801–92000 of 99,299
Results 91801–92000 of 99,299