The growth of helium bubbles impacts structural integrity of materials in nuclear applications. Understanding helium bubble nucleation and growth mechanisms is critical for improved material applications and aging predictions. Systematic molecular dynamics simulations have been performed to study helium bubble nucleation and growth mechanisms in Fe70Ni11Cr19 stainless steels. First, helium cluster diffusivities are calculated at a variety of helium cluster sizes and temperatures for systems with and without dislocations. Second, the process of diffusion of helium atoms to join existing helium bubbles is not deterministic and is hence studied using ensemble simulations for systems with and without vacancies, interstitials, and dislocations. We find that bubble nucleation depends on diffusion of not only single helium atoms, but also small helium clusters. Defects such as vacancies and dislocations can significantly impact the diffusion kinetics due to the trapping effects. Vacancies always increase the time for helium atoms to join existing bubbles due to the short-range trapping effect. This promotes bubble nucleation as opposed to bubble growth. Interestingly, dislocations can create a long-range trapping effect that reduces the time for helium atoms to join existing bubbles. This can promote bubble growth within a certain region near dislocations.
Nuclear power plants (NPPs) are considering flexible plant operations to take advantage of excess thermal and electrical energy. One option for NPPs is to pursue hydrogen production through high temperature electrolysis as an alternate revenue stream to remain economically viable. The intent of this study is to investigate the risk of a hydrogen production facility in close proximity to an NPP. A 100 MW, 500 MW, and 1,000 MW facility are evaluated herein. Previous analyses have evaluated preliminary designs of a hydrogen production facility in a conservative manner to determine if it is feasible to co-locate the facility within 1 km of an NPP. This analysis specifically evaluates the risk components of different hydrogen production facility designs, including the likelihood of a leak within the system and the associated consequence to critical NPP targets. This analysis shows that although the likelihood of a leak in an HTEF is not negligible, the consequence to critical NPP targets is not expected to lead to a failure given adequate distance from the plant.
This report summarizes the fiscal year 2023 (FY23) status of the second phase of a series of borehole heater tests in salt at the Waste Isolation Pilot Plant (WIPP) funded by the Disposal Research and Development (R&D) program of the Spent Fuel & Waste Science and Technology (SFWST) office at the US Department of Energy’s Office of Nuclear Energy’s (DOE-NE) Office in the Spent Fuel and Waste Disposition (SFWD) program.
The classical Drude model provides an accurate description of the plasma resonance of three-dimensional materials, but only partially explains two-dimensional systems where quantum mechanical effects dominate such as P:δ layers - atomically thin sheets of phosphorus dopants in silicon that induce electronic properties beyond traditional doping. Previously it was shown that P:δ layers produce a distinct Drude tail feature in ellipsometry measurements. However, the ellipsometric spectra could not be properly fit by modeling the δ layer as a discrete layer of classical Drude metal. In particular, even for large broadening corresponding to extremely short relaxation times, a plasma resonance feature was anticipated but not evident in the experimental data. In this work, we develop a physically accurate description of this system, which reveals a general approach to designing thin films with intentionally suppressed plasma resonances. Our model takes into account the strong charge-density confinement and resulting quantum mechanical description of a P:δ layer. We show that the absence of a plasma resonance feature results from a combination of two factors: (i) the sharply varying charge-density profile due to strong confinement in the direction of growth; and (ii) the effective mass and relaxation time anisotropy due to valley degeneracy. The plasma resonance reappears when the atoms composing the δ layer are allowed to diffuse out from the plane of the layer, destroying its well-confined two-dimensional character that is critical to its distinctive electronic properties.
A Machine and Deep Learning (MLDL) methodology is developed and applied to give a high fidelity, fast surrogate for 2D resistive MagnetoHydroDynamic (MHD) simulations of Magnetic Liner Inertial Fusion (MagLIF) implosions. The resistive MHD code GORGON is used to generate an ensemble of implosions with different liner aspect ratios, initial gas preheat temperatures (that is, different adiabats), and different liner perturbations. The liner density and magnetic field as functions of x, y, and z were generated. The Mallat Scattering Transformation (MST) is taken of the logarithm of both fields and a Principal Components Analysis (PCA) is done on the logarithm of the MST of both fields. The fields are projected onto the PCA vectors and a small number of these PCA vector components are kept. Singular Value Decompositions of the cross correlation of the input parameters to the output logarithm of the MST of the fields, and of the cross correlation of the SVD vector components to the PCA vector components are done. This allows the identification of the PCA vectors vis-a-vis the input parameters. Finally, a Multi Layer Perceptron (MLP) neural network with ReLU activation and a simple three layer encoder/decoder architecture is trained on this dataset to predict the PCA vector components of the fields as a function of time. Details of the implosion, stagnation, and the disassembly are well captured. Examination of the PCA vectors and a permutation importance analysis of the MLP show definitive evidence of an inverse turbulent cascade into a dipole emergent behavior. The orientation of the dipole is set by the initial liner perturbation. The analysis is repeated with a version of the MST which includes phase, called Wavelet Phase Harmonics (WPH). While WPH do not give the physical insight of the MST, they can and are inverted to give field configurations as a function of time, including field-to-field correlations.
Waveform cross-correlation is a sensitive phase-matched filtering technique that can detect seismic events for nuclear explosion monitoring. However, there are outstanding challenges with correlation detectors, most notably a direct dependence on the completeness of the waveform template library. To ameliorate these challenges, we investigate how dynamic time warping (DTW) may make waveform correlation more robust. DTW analyzes the differences between two time series and attempts to “warp” one time series relative to another in a recursive manner. We apply DTW to synthetic earthquake and recorded explosion templates to expand the capability of correlation detectors. We explore what conditions (e.g., source, station distance, frequency bands) and/or DTW algorithms generate stronger correlation scores. We show that DTW performs well on noisy signals and can dramatically improve the cross-correlation coefficient between a template and data-stream waveform. We conclude with recommendations on how to utilize DTW in nuclear monitoring detection.
Wang, Qian; Guillaume, Joseph H.A.; Jakeman, John D.; Bennett, Frederick R.; Croke, Barry F.W.; Fu, Baihua; Yang, Tao; Jakeman, Anthony J.
Factor Fixing (FF) is a common method for reducing the number of model parameters to lower computational cost. FF typically starts with distinguishing the insensitive parameters from the sensitive and pursues uncertainty quantification (UQ) on the resulting reduced-order model, fixing each insensitive parameter at a fixed value. There is a need, however, to expand such a common approach to consider the effects of decision choices in the FF-UQ procedure on metrics of interest. Therefore, to guide the use of FF and increase confidence in the resulting dimension-reduced model, we propose a new adaptive framework consisting of four principles: (a) re-parameterize the model first to reduce obvious non-identifiable parameter combinations, (b) focus on decision relevance especially with respect to errors in quantities of interest (QoI), (c) conduct adaptive evaluation and robustness assessment of errors in the QoI across FF choices as sample size increases, and (d) reconsider whether fixing is warranted. The framework is demonstrated on a spatially-distributed water quality model. The error in estimates of QoI caused by FF can be estimated using a Polynomial Chaos Expansion (PCE) surrogate model. Built with 70 model runs, the surrogate is computationally inexpensive to evaluate and can provide global sensitivity indices for free. For the selected catchment, just two factors may provide an acceptably accurate estimate of model uncertainty in the average annual load of Total Suspended Solids (TSS), suggesting that reducing the uncertainty in these two parameters is a priority for future work before undertaking further formal uncertainty quantification.
Thermal-Hydrologic (TH) modeling of DECOVALEX 2023, Task C has continued in FY23. This report summarizes progress in TH modeling of Step 1c, with calibration modeling and the addition of shotcrete. The work involves 3-D modeling of the full-scale emplacement experiment at the Mont Terri Underground Rock Laboratory (Nagra, 2019). While Step 1 is focused on modeling the heating phase of the FE experiment with changes in pore pressure in the Opalinus clay resulting from heating, Step 1c is focused on calibration of models using available data.
When high-energy-density materials are subjected to thermal or mechanical insults at extreme conditions (shock loading), a coupled response between the thermo-mechanical and chemical behaviors is systematically induced. Herein we develop a reaction model for the fast chemistry of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) at the mesoscopic scale, where the chemical behavior is determined by underlying microscopic reactive simulations. The slow carbon cluster formation is not discussed in the present work. All-atom reactive molecular dynamics (MD) simulations are performed with the ReaxFF potential, and a reduced-order chemical kinetics model for TATB is fitted to isothermal and adiabatic simulations of single crystal chemical decomposition. Unsupervised machine learning techniques based on non-negative matrix factorization are applied to MD trajectories to model the decomposition kinetics of TATB in terms of a four-component model. The associated heats of reaction are fit to the temperature evolution from adiabatic decomposition trajectories. Using a chemical species analysis, we show that non-negative matrix factorization captures the main chemical decomposition steps of TATB and provides an accurate estimation of their evolution with temperature. The final analytical formulation, coupled to a diffusion term, is incorporated into a continuum formalism, and simulation results are compared one-to-one against MD simulations of 1D reaction propagation along different crystallographic directions and with different initial temperatures. A good agreement is found for both the temporal and spatial evolution of the temperature field.
Abstract: Advantages of the 2.5D HI (Heterogeneous Integration) electronics packaging of the power electronics compared to PCB packaging will be presented. Current 2.5D packaging effort using TSV (Through Silicon Via) will be presented in terms of fabrication, microstructural analysis, reliability, and thermal simulation.
The table presented below suggests the basic information that should be covered in a facility NMAC Plan for an NMAC program that is designed for nuclear security. The topics are appropriate for and should be addressed by all facilities in their NMAC Plans. They are appropriate for NMAC Plans for nuclear power plants, research reactors, fuel manufacturing facilities, facilities that produce medical isotopes, and other facilities. The difference is in the intensity with which the various measures are applied and the thoroughness of the description of the application (i.e., the program requirements). The robustness of a facility NMAC program and the content of its NMAC Plan should be graded in accordance with the type of facility and the category of its nuclear material.
It is essential to Sandia National Laboratory’s continued success in scientific and technological advances and mission delivery to embrace a hybrid workforce culture under which current and future employees can thrive. This report focuses on the findings of the Hybrid Work Team for the Center for Computing Research, which met weekly from March to June 2023 and conducted a survey across the Center at Sandia. Conclusions in this report are drawn from the 9 authors of this report, which comprises the Hybrid Work Team, and 15 responses to a center-wide survey, as well as numerous conversations with colleagues. A major finding was widespread dissatisfaction with the quantity, execution, and tooling surrounding formal meetings with remote participants. While there was consensus that remote work enables people to produce high quality individual and technical work, there was also consensus that there was widespread social disconnect, with particular concern about hires that were made after the onset of the Covid-19 pandemic. There were many concerns about tooling and policy to facilitate remote collaboration both within Sandia and with its external collaborators. This report includes recommendations for mitigating these problems. For problems for which obvious recommendations cannot be made, ideas of what a successful solution might look like are presented.
Additive manufacturing (AM) is a relatively new technological advancement that allows for rapid prototyping, development of intricate shapes, and reduction in manufacturing time. The materials of interest for this project are Ultem 1010, ABS M30, FDM Nylon 12, PC, and PPSF. However, little is known regarding the aging behavior of these AM materials. The limited aging study outlined herein was designed to compare the chemical, physical, and mechanical properties of AM parts as they experience accelerated aging at 70 °C for a total of 24 weeks. In general, ABS M30 stood out as it appeared to undergo chemical and physical changes leading to increase in density and an overall more brittle material, making this commonly used material not attractive for long-term use.
Dannemann Dugick, Fransiska K.; Bishop, Jordan W.; Martire, Leo; Iezzi, Alexandra M.; Assink, Jelle D.; Brissaud, Quentin; Arrowsmith, Stephen
This special section of the Bulletin of the Seismological Society of America provides a broad overview on recent advances to the understanding of the seismoacoustic wavefield through 19 articles. Leveraging multiphenomenology datasets is instrumental for the continued success of future planetary missions, nuclear test ban treaty verification, and natural hazard monitoring. Progress in our theoretical understanding of mechanical coupling, advancements in coupled-media wave modeling, and developments of efficient multitechnology inversion procedures are key to fully exploiting geophysical datasets on Earth and beyond. We begin by highlighting papers describing experimental setups and instrumentation, followed by characterization of natural and anthropogenic sources of interest, and ending in new open-access datasets. Finally, we conclude with an overview of challenges that remain as well as some potential directions for future investigation within the growing multidisciplinary field of seismoacoustics.
Threaded fastener behavior can be an important aspect of complex component and system behavior, but there is no one-size-fits-all finite element analysis technique. Proper modeling of threaded fastener joints requires careful consideration of many details, from test setup and data acquisition to constitutive modeling and uncertainty quantification approaches. This report details analysis of a “mini-radax” bolted-joint exemplar where a Discrete-Direct uncertainty quantification approach is employed to evaluate margin of the component. The mini-radax geometry is tested to failure on a drop table, and single-coupon tests of individual fasteners serve as foundational data for the analysis. Analysis predictions complement the test data well and provide additional context for engineering decision-making.