Socioeconomically-inspired modeling to justify use of fine-grain mobility data
When designing measures to control infectious disease spread, it is crucial to understand the structure of the population for which interventions are being implemented. Recent work has highlighted the need for models that incorporate demographic heterogeneity not just in age structure but also by socioeconomic status (SES). Appropriately capturing additional sources of population heterogeneity requires considerable data and model development. To understand the potential disagreement between SES-explicit or SES-agnostic disease models, we adapted Sandia’s Adaptive Recovery Model (ARM) model to consider differences in contact structure and mortality by Social Vulnerability Index (SVI) on a theoretical network. We also incorporated an Average network that did not consider SVI. By exploring disparities in vaccine and PPE uptake by SES and comparing to Average networks, as well as analyzing the influence of global vs. local contact, we found that the two model constructions often predicted different outcomes. Whether these differences are truly reflective of incorporating SES, and which model most closely represents reality, merits further investigation.