Several mixture models are evaluated for their suitability in predicting the equivalent permittivity of dielectric particles in a dielectric medium for intermediate solid volume fractions (0.4 to 0.6). Predictions of the Maxwell, Rayleigh, Bottcher and Bruggeman models are compared to computational simulations of several arrangements of solid particles in a gas and to the experimentally determined permittivity of a static particle bed. The experiment uses spherical glass beads in air, so air and glass permittivity values (1 and 7, respectively) are used with all of the models and simulations. The experimental system used to measure the permittivity of the static particle bed and its calibration are described. The Rayleigh model is found to be suitable for predicting permittivity over the entire range of solid volume fractions (0-0.6).
Proliferation of degrees-of-freedom has plagued discontinuous Galerkin methodology from its inception over 30 years ago. This paper develops a new computational formulation that combines the advantages of discontinuous Galerkin methods with the data structure of their continuous Galerkin counterparts. The new method uses local, element-wise problems to project a continuous finite element space into a given discontinuous space, and then applies a discontinuous Galerkin formulation. The projection leads to parameterization of the discontinuous degrees-of-freedom by their continuous counterparts and has a variational multiscale interpretation. This significantly reduces the computational burden and, at the same time, little or no degradation of the solution occurs. In fact, the new method produces improved solutions compared with the traditional discontinuous Galerkin method in some situations.
The intense magnetic field generated in the 20 MA Z-machine is used to accelerate metallic flyer plates to high velocity for the purpose of generating strong shocks in equation of state experiments. We present results pertaining to experiments in which a 0.085 cm thick Al flyer plate is magnetically accelerated across a vacuum gap into a quartz target. Peak magnetic drive pressures up to 4.9 Mbar were produced, which yielded a record 34 km/s flyer velocity without destroying it by shock formation or Joule heating. Two-dimensional MHD simulation was used to optimize the magnetic drive pressure on the flyer surface, shape the current pulse to accelerate the flyer without shock formation (i.e., quasi-isentropically), and predict the flyer velocity. Shock pressures up to 11.5 Mbar were produced in quartz. Accurate measurements of the shock velocity indicate that a fraction of the flyer is at solid density when it arrives at the target. Comparison of measurements and simulation results yields a consistent picture of the flyer state at impact with the quartz target.
We present Density Functional Theory (DFT) calculations of water in a region of phase space of interest in shock experiments. The onset of electrical conductivity in shocked water is determined by ionic conductivity, with the electron contribution dominating at higher pressures. The ionic contribution to the conduction is calculated from proton diffusion (Green-Kubo formula) and the electronic contribution is calculated using the Kubo-Greenwood formula [1]. The calculations are performed with VASP, a plane-wave pseudopotential code. At 2000K and a density of 2.3 g/cc, we find a significant dissociation of water into H, OH, and H3O, not only intermittent formation of OH - H3O pairs as suggested earlier for 2000 K and 1.95 g/cc [2]. The calculated conductivity is compared to experimental data [3]. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Safety Administration under contract DE-AC04-94AL85000. This project was supported by the Sandia LDRD office. [1] M. P. Desjarlais, J. D. Kress, and L. A. Collins; Phys. Rev. B 66, 025401 (2002). [2] E. Schwegler, et al. Phys. Rev. Lett. 87, 265501 (2001). [3] P.M. Celliers, et. al. Physics of Plasmas 11, L41 (2004).
This paper describes the photonic component development, which exploits pioneering work and unique expertise at Sandia National Laboratories, ARDEC and the Army Research Laboratory by combining key optoelectronic technologies to design and demonstrate components for this fuzing application. The technologies under investigation for the optical fuze design covered in this paper are vertical cavity surface emitting lasers (VECSELs), integrated resonant cavity photodetectors (RCPD), and diffractive micro-optics. The culmination of this work will be low cost, robust, fully integrated, g-hardened components designed suitable for proximity fuzing applications. The use of advanced photonic components will enable replacement of costly assemblies that employ discrete lasers, photodetectors, and bulk optics. The integrated devices will be mass produced and impart huge savings for a variety of Army applications.
A suite of impact experiments was conducted to assess spatial and shot-to-shot variability in dynamic properties of tantalum. Samples had a uniform refined {approx}20 micron grain structure with a strong axisymmetric [111] crystallographic texture. Two experiments performed with sapphire windows (stresses of approximately 7 and 12 GPa) clearly showed elastic-plastic loading and slightly hysteretic unloading behavior. An HEL amplitude of 2.8 GPa (corresponding to Y 1.5 GPa) was observed. Free-surface spall experiments showed clear wave attenuation and spallation phenomena. Here, loading stresses were {approx} 12.5 GPa and various ratios of impactor to target thicknesses were used. Spatial and shot-to-shot variability of the spall strength was {+-} 20%, and of the HEL, {+-} 10%. Experiments conducted with smaller diameter flyer plates clearly showed edge effects in the line and point VISAR records, indicating lateral release speeds of roughly 5 km/s.
Spectroscopic investigations in the visible and near UV are underway to study plasmas present in X-ray radiography diodes during the time of the electron beam propagation. These studies are being performed on the RITS-3 accelerator (5.25 MV and 120 kA) at Sandia National Laboratories using several diode configurations. The proper characterization of the plasmas occurring during the time of the X-ray pulse can lead to a greater understanding of diode behavior and X-ray spot size evolution. By studying these plasmas along with the use of selective dopants, insights into such phenomena as impedance collapse, thermal and non-thermal species behavior, charge and current neutralization, anode and cathode plasma formation and propagation, and beam/foil interactions, can be obtained. Information from line and continuum emission and absorption can give key plasma parameters such as temperatures, densities, charge states, and expansion velocities. This information is important for proper modeling and future predictive capabilities for the design and improvement of flash X-ray radiography diodes. Diagnostics include a gated, intensified multichannel plate camera combined with a 1 meter Czerny-Turner monochromator with a multi-fiber spectral input, allowing for both temporal and spatial resolution. Recent results are presented.
Single layer transition metal sulfides (SLTMS) such as MoS{sub 2}, WS{sub 2}, and ReS{sub 2}, play an important role in catalytic processes such as the hydrofining of petroleum streams, and are involved in at least two of the slurry-catalyst hydroconversion processes that have been proposed for upgrading heavy petroleum feed and other sources of hydrocarbon fuels such as coal and shale oils. Additional promising catalytic applications of the SLTMS are on the horizon. The physical, chemical, and catalytic properties of these materials are reviewed in this report. Also discussed are areas for future research that promise to lead to advanced applications of the SLTMS.
The magnetically immersed (B{sub z}) diode is being investigated as a source for pulsed-power driven flash radiography. Experiments fielding this diode have revealed a limit on its achievable current density on target. Either a small spot produces a low dose, or a high dose is achieved with a large spot. It has been proposed that this limit is due to non-protonic ions liberated from the anode surface and subsequently ionizing to higher states. The three-dimensional particle-in-cell code LSP is used to investigate this proposal. Data from the recent immersed diode experiments conducted on the RITS-3 accelerator are compared to LSP models of the experimental configuration, including the B{sub z} field map. We report on how the non-protonic and protonic ion models compare to data, and proposals for future investigation.
Controlled seeding of perturbations is employed to study the evolution of wire array z-pinch implosion instabilities which strongly impact x-ray production when the 3D plasma stagnates on axis. Wires modulated in radius exhibit locally enhanced magnetic field and imploding bubble formation at discontinuities in wire radius due to the perturbed current path. Wires coated with localized spectroscopic dopants are used to track turbulent material flow. Experiments and MHD modeling offer insight into the behavior of z-pinch instabilities.
Experiments to study the implosion dynamics and radiation characteristics of copper z-pinches have been fielded at the 1 MA Zebra facility and the 20 MA Z facility. The impact of initial load mass, initial load diameter, and nesting of wire arrays on the precursor and the stagnated plasma has been evaluated through spectroscopy, shadowgraphy, and fluence measurements. Plasma parameters extracted from modeling of the time-integrated L-shell spectra indicate the presence of more than one plasma source contributing to the radiation, likely due to non-uniform hot spot x-ray emission or temporal gradients.
Over the last several years, rapid progress has been made evaluating the double-z-pinch indirect-drive, inertial confinement fusion (ICF) high-yield target concept (Hammer et al 1999 Phys. Plasmas 6 2129). We have demonstrated efficient coupling of radiation from two wire-array-driven primary hohlraums to a secondary hohlraum that is large enough to drive a high yield ICF capsule. The secondary hohlraum is irradiated from two sides by z-pinches to produce low odd-mode radiation asymmetry. This double-pinch source is driven from a single electrical power feed (Cuneo et al 2002 Phys. Rev. Lett. 88 215004) on the 20 MA Z accelerator. The double z-pinch has imploded ICF capsules with even-mode radiation symmetry of 3.1 {+-} 1.4% and to high capsule radial convergence ratios of 14-21 (Bennett et al 2002 Phys. Rev. Lett. 89 245002; Bennett et al 2003 Phys. Plasmas 10 3717; Vesey et al 2003 Phys. Plasmas 10 1854). Advances in wire-array physics at 20 MA are improving our understanding of z-pinch power scaling with increasing drive current. Techniques for shaping the z-pinch radiation pulse necessary for low adiabat capsule compression have also been demonstrated.
The evolution of granular shear flow is investigated as a function of height in a split-bottom Couette cell. Using particle tracking, magnetic-resonance imaging, and large-scale simulations, we find a transition in the nature of the shear as a characteristic height H* is exceeded. Below H* there is a central stationary core; above H* we observe the onset of additional axial shear associated with torsional failure. Radial and axial shear profiles are qualitatively different: the radial extent is wide and increases with height, while the axial width remains narrow and fixed.
The use of Ion Mobility Spectrometry (IMS) in the Detection of Contraband Sandia researchers use ion mobility spectrometers for trace chemical detection and analysis in a variety of projects and applications. Products developed in recent years based on IMS-technology include explosives detection personnel portals, the Material Area Access (MAA) checkpoint of the future, an explosives detection vehicle portal, hand-held detection systems such as the Hound and Hound II (all 6400), micro-IMS sensors (1700), ordnance detection (2500), and Fourier Transform IMS technology (8700). The emphasis to date has been on explosives detection, but the detection of chemical agents has also been pursued (8100 and 6400). Combining Ion Mobility Spectrometry (IMS) with Mass Spectrometry (MS) is described. The IMS-MS combination overcomes several limitations present in simple IMS systems. Ion mobility alone is insufficient to identify an unknown chemical agent. Collision cross section, upon which mobility is based, is not sufficiently unique or predictable a priori to be able to make a confident peak assignment unless the compounds present are already identified. Molecular mass, on the other hand, is much more readily interpreted and related to compounds. For a given compound, the molecular mass can be determined using a pocket calculator (or in one's head) while a reasonable value of the cross-section might require hours of computation time. Thus a mass spectrum provides chemical specificity and identity not accessible in the mobility spectrum alone. In addition, several advanced mass spectrometric methods, such as tandem MS, have been extensively developed for the purpose of molecular identification. With an appropriate mass spectrometer connected to an ion mobility spectrometer, these advanced identification methods become available, providing greater characterization capability.
Sedimentary basins can increase the magnitude and extend the duration of seismic shaking. This potential for seismic amplification is investigated for Pahrump Valley, Nevada-California. The Pahrump Valley is located approximately 50 km northwest of Las Vegas and 75 km south of the Nevada Test Site. Gravity data suggest that the city of Pahrump sits atop a narrow, approximately 5 km deep sub-basin within the valley. The seismic amplification, or ''site effect'', was investigated using a combination of in situ velocity modeling and comparison of the waveforms and spectra of weak ground motion recorded in the city of Pahrump, Nevada, and those recorded in the nearby mountains. Resulting spectral ratios indicate seismic amplification factors of 3-6 over the deepest portion of Pahrump Valley. This amplification predominantly occurs at 2-2.5 Hz. Amplification over the deep sub-basin is lower than amplification at the sub-basin edge, location of the John Blume and Associates PAHA seismic station, which recorded many underground nuclear tests at the Nevada Test Site. A comprehensive analysis of basin amplification for the city of Pahrump should include 3-D basin modeling, due to the extreme basement topography of the Pahrump Valley.
This report describes results of tests using a laser system designed by Coherent Technologies, Inc., in conjunction with Sandia developed nonlinear optics technology. Test results are described for three different optical parametric oscillators built at Sandia. The report concludes with recommendations for future work.
During the past several years Sandia National Laboratories has carried out proof-of-concept experiments to demonstrate tunable, efficient, high-energy ultraviolet nanosecond light sources for satellite-based ozone DIAL. We designed our UV sources to generate pulse energies ≳ 200 mJ at 10 Hz in the range of 308-320 nm with optical-to-optical efficiency approaching 25%. We use sum-frequency generation to mix the 532 nm second harmonic of Nd:YAG with near-IR light derived from a self-injection-seeded image-rotating nonplanar-ring optical parametric oscillator. Laboratory configurations using extra- and intra-cavity sum-frequency generation were designed and tested, yielding 1064 nm to 320 nm conversion efficiencies of 21% and 23% respectively, with pulse energies of 190 mJ and 70 mJ. These energies and efficiencies require pump depletion in the parametric oscillator of at least 80% and SFG efficiency approaching 60%. While the results reported here fall slightly short of our original goals, we believe UV pulse energies exceeding 250 mJ are possible with additional refinements to our technology. Although the sources tested to date are laboratory prototypes with extensive diagnostics, the core components are compact and mechanically robust and can easily be packaged for satellite deployment.
Laser-extinction diagnostics can provide spatially and temporally resolved measurements of attenuation from combustion-generated soot within the path of the beam. When laser-extinction techniques are utilized in high-pressure combustion environments, however, a number of complications may be encountered that are not present in low-pressure environments. Several of these experimental difficulties were investigated in diesel engine environments, and solutions that facilitated acquisition of reliable laser-extinction data were demonstrated. Beam steering due to refractive index gradients within the combusting gases was observed, and a full-angle beam divergence of over 100 mrad was measured. A spatial-filtering scheme was employed to reduce the collection of forward-scattered light and background combustion luminosity while ensuring full collection of the steered beam. To further reject combustion luminosity, a narrow-bandpass laser-line filter was employed, after diffusing the transmitted light sufficiently to avoid the effects of significant spatial non-uniformities of the filter. As the windows were subjected to thermal and mechanical stresses, dynamic etaloning effects due to the photoelastic properties of synthetic fused silica were observed. Dynamic changes in the polarization of the exit beam were also observed, as stress-induced birefringence in the windows caused dynamic phase retardation of the transmitted beam. Although these photoelastic effects could not be eliminated, they were mitigated by introducing curvature to the wavefronts in the laser-extinction beam and using polarization-insensitive elements in the detection optics. Soot deposits on window surfaces were removed ablatively using a coaxial, high-energy, pulsed Nd:YAG laser beam.
Accelerated aging of Nylon 6.6 fibers used in parachutes has been conducted by following the tensile strength loss under both thermal-oxidative and 100% relative humidity conditions. Thermal-oxidative studies (air circulating ovens) were performed for time periods of weeks to years at temperatures ranging from 37 °C to 138 °C. Accelerated aging humidity experiments (100% RH) were performed under both an argon atmosphere to examine the 'pure' hydrolysis pathway, and under an oxygen atmosphere (oxygen partial pressure close to that occurring in air) to mimic true aging conditions. As expected the results indicated that degradation caused by humidity is much more important than thermal-oxidative degradation. Surprisingly when both oxygen and humidity were present the rate of degradation was dramatically enhanced relative to humidity aging in the absence of oxygen. This significant and previously unknown phenomena underscores the importance of careful accelerated aging that truly mimics real world storage conditions. Published by Elsevier Ltd.
This report is a review of open literature concerning threats including sabotage and theft related to fissile material transport in Japan. It is intended to aid Japanese officials in the development of a design basis threat. This threat includes the external threats of the terrorist, criminal, and extremist, and the insider threats of the disgruntled employee, the employee forced into cooperation via coercion, the psychotic employee, and the criminal employee. Examination of the external terrorist threat considers Japanese demographics, known terrorist groups in Japan, and the international relations of Japan. Demographically, Japan has a relatively homogenous population, both ethnically and religiously. Japan is a relatively peaceful nation, but its history illustrates that it is not immune to terrorism. It has a history of domestic terrorism and the open literature points to the Red Army, Aum Shinrikyo, Chukaku-Ha, and Seikijuku. Japan supports the United States in its war on terrorism and in Iraq, which may make Japan a target for both international and domestic terrorists. Crime appears to remain low in Japan; however sources note that the foreign crime rate is increasing as the number of foreign nationals in the country increases. Antinuclear groups' recent foci have been nuclear reprocessing technology, transportation of MOX fuel, and possible related nuclear proliferation issues. The insider threat is first defined by the threat of the disgruntled employee. This threat can be determined by studying the history of Japan's employment system, where Keiretsu have provided company stability and lifetime employment. Recent economic difficulties and an increase of corporate crime, due to sole reliability on the honor code, have begun to erode employee loyalty.
Oil caverns at the U.S. Strategic Petroleum Reserve (SPR) are subjected to geothermal heating from the surrounding domal salt. This process raises the temperature of the crude oil from around 75 F upon delivery to SPR to as high as 130 F after decades of storage. While this temperature regime is adequate for long-term storage, it poses challenges for offsite delivery, with warm oil evolving gases that pose handling and safety problems. SPR installed high-capacity oil coolers in the mid-1990's to mitigate the emissions problem by lowering the oil delivery temperature. These heat exchanger units use incoming raw water as the cooling fluid, and operate only during a drawdown event where incoming water displaces the outgoing oil. The design criteria for the heat exchangers are to deliver oil at 100 F or less under all drawdown conditions. Increasing crude oil vapor pressures due in part to methane intrusion in the caverns is threatening to produce sufficient emissions at or near 100 F to cause the cooled oil to violate delivery requirements. This impending problem has initiated discussion and analysis of alternative cooling methods to bring the oil temperature even lower than the original design basis of 100 F. For the study described in this report, two alternative cooling methods were explored: (1) cooling during a limited drawdown, and (2) cooling during a degas operation. Both methods employ the heat exchangers currently in place, and do not require extra equipment. An analysis was run using two heat transfer models, HEATEX, and CaveMan, both developed at Sandia National Laboratories. For cooling during a limited drawdown, the cooling water flowrate through the coolers was varied from 1:1 water:oil to about 3:1, with an increased cooling capacity of about 3-7 F for the test cavern Bryan Mound 108 depending upon seasonal temperature effects. For cooling in conjunction with a degas operation in the winter, cavern oil temperatures for the test cavern Big Hill 102 were cooled sufficiently that the cavern required about 9 years to return to the temperature prior to degas. Upon reviewing these results, the authors recommended to the U.S. Department of Energy that a broader study of the cooling during degas be pursued in order to examine the potential benefits of cooling on all caverns in the current degasification schedule.
In October of 2003 experts involved in various aspects of homeland security from the Pacific region met to engage in a free-wheeling discussion and brainstorming (a 'fest') on the role that technology could play in winning the war on terrorism in the Pacific region. The result was a concise and relatively thorough definition of the terrorism problem in the Pacific region, emphasizing the issues unique to Island nations in the Pacific setting, along with an action plan for developing working demonstrations of advanced technological solutions to these issues. Since PacFest 2003, the maritime dimensions of the international security environment have garnered increased attention and interest. To this end, PacFest 2004 sought to identify gaps and enabling technologies for maritime domain awareness and responsive decision-making in the Asia-Pacific region. The PacFest 2004 participants concluded that the technologies and basic information building blocks exist to create a system that would enable the Pacific region government and private organizations to effectively collaborate and share their capabilities and information concerning maritime security. The proposed solution summarized in this report integrates national environments in real time, thereby enabling effective prevention and first response to natural and terrorist induced disasters through better use of national and regional investments in people, infrastructure, systems, processes and standards.
The report presented below is to appear in ''Electrochemistry at the Nanoscale'', Patrik Schmuki, Ed. Springer-Verlag, (ca. 2005). The history of the LIGA process, used for fabricating dimensional precise structures for microsystem applications, is briefly reviewed, as are the basic elements of the technology. The principal focus however, is on the unique aspects of the electrochemistry of LIGA through-mask metal deposition and the generation of the fine and uniform microstructures necessary to ensure proper functionality of LIGA components. We draw from both previously published work by external researchers in the field as well as from published and unpublished studies from within Sandia.
Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's (DOE) National Nuclear Security Administration. The DOE Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2004 was prepared in accordance with DOE Order 231.1A. The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2004. General site and environmental program information is also included.
Model-based computer simulations have revolutionized product development in the last 10 to 15 years. Technologies that have existed for many decades or even centuries have been improved with the aid of computer simulations. Everything from low-tech consumer goods such as detergents, lubricants and light bulb filaments to the most advanced high-tech products such as airplane wings, wireless communication technologies and pharmaceuticals is engineered with the aid of computer simulations today. In this paper, we present a framework for describing computational tools and their application within the context of product engineering. We examine a few cases of product development that integrate numerical computer simulations into the development stage. We will discuss how the simulations were integrated into the development process, what features made the simulations useful, the level of knowledge and experience that was necessary to run meaningful simulations and other details of the process. Based on this discussion, recommendations for the incorporation of simulations and computational tools into product development will be made.
The objective of this subtask of the Unconventional Nuclear Warfare Design project was to demonstrate mitigation technologies for radiological material dispersal and to assist planners with incorporation of the technologies into a concept of operations. The High Consequence Assessment and Technology department at Sandia National Laboratories (SNL) has studied aqueous foam's ability to mitigate the effects of an explosively disseminated radiological dispersal device (RDD). These benefits include particle capture of respirable radiological particles, attenuation of blast overpressure, and reduction of plume buoyancy. To better convey the aqueous foam attributes, SNL conducted a study using the Explosive Release Atmospheric Dispersion model, comparing the effects of a mitigated and unmitigated explosive RDD release. Results from this study compared health effects and land contamination between the two scenarios in terms of distances of effect, population exposure, and remediation costs. Incorporating aqueous foam technology, SNL created a conceptual design for a stationary containment area to be located at a facility entrance with equipment that could minimize the effects from the detonation of a vehicle transported RDD. The containment design was evaluated against several criteria, including mitigation ability (both respirable and large fragment particle capture as well as blast overpressure suppression), speed of implementation, cost, simplicity, and required space. A mock-up of the conceptual idea was constructed at SNL's 9920 explosive test site to demonstrate the containment design.
The reaction zone of a diesel fuel jet stabilizes at a location downstream of the fuel injector once the initial autoignition phase is over. This distance is referred to as flame lift-off length. Recent investigations have examined the effects of a wide range of parameters (injection pressure, orifice diameter, and ambient gas temperature, density and oxygen concentration) on lift-off length under quiescent diesel conditions. Many of the experimental trends in lift-off length were in agreement with scaling laws developed for turbulent, premixed flame propagation in gas-jet lifted flames at atmospheric conditions. However, several effects did not correlate with the gas-jet scaling laws, suggesting that other mechanisms could be important to lift-off stabilization at diesel conditions. This paper shows experimental evidence that ignition processes affect diesel lift-off stabilization. Experiments were performed in the same optically-accessible combustion vessel as the previous lift-off research. The experimental results show that the ignition quality of a fuel affects lift-off. Fuels with shorter ignition delays generally produce shorter lift-off lengths. In addition, a cool flame is found upstream of, or near the same axial location as, the quasi-steady lift-off length, indicating that first-stage ignition processes affect lift-off. High-speed chemiluminescence imaging also shows that high-temperature self-ignition occasionally occurs in kernels that are upstream of, and detached from, the high-temperature reaction zone downstream, suggesting that the lift-off stabilization is not by flame propagation into upstream reactants in this instance. Finally, analysis of the previous lift-off length database shows that the time-scale for jet mixing from injector-tip orifice to lift-off length collapses to an Arrhenius-type expression, a common method for describing ignition delay in diesel sprays. This Arrhenius-based lift-off length correlation shows comparable accuracy as a previous power-law fit of the No.2 diesel lift-off length database.
The radiant heat test facility develops test sets providing well-characterized thermal environments, often representing fires. Many of the components and procedures have become standardized to such an extent that the development of a specialized design tool was appropriate. SPLASH (Single Panel Lamp and Shroud Helper) is that tool. SPLASH is implemented as a user-friendly program that allows a designer to describe a test setup in terms of parameters such as lamp number, power, position, and separation distance. Thermal radiation is the dominant mechanism of heat transfer and the SPLASH model solves a radiation enclosure problem to estimate temperature distributions in a shroud providing the boundary condition of interest. Irradiance distribution on a specified viewing plane is also estimated. This document provides the theoretical development for the underlying model. A series of tests were conducted to characterize SPLASH's ability to analyze lamp and shroud systems. The comparison suggests that SPLASH succeeds as a design tool. Simplifications made to keep the model tractable are demonstrated to result in estimates that are only approximately as uncertain as many of the properties and characteristics of the operating environment.
This report describes the methodology, analysis and conclusions of a comparison survey of recycling programs at ten Department of Energy sites including Sandia National Laboratories/New Mexico (SNL/NM). The goal of the survey was to compare SNL/NM's recycling performance with that of other federal facilities, and to identify activities and programs that could be implemented at SNL/NM to improve recycling performance.
The absence of agreed definitions and metrics for supercomputer RAS obscures meaningful discussion of the issues involved, hinders their solution, and increases total system cost. Seeking to foster a common basis for communication about supercomputer RAS, [1] proposed a general system state model, definitions, and measurements based on the SEMI-E10 specification [2] used in the semiconductor manufacturing industry. This document enumerates the platform-specific details necessary to apply that general framework to the Red Storm system at Sandia National Laboratories. Familiarity with [1] is a strong prerequisite for understanding of this document, as is familiarity with the Red Storm RAS subsystem (although to a much lesser degree). Given the current pre-production status of Red Storm, this document does not specify actual policy or practice, but rather proposes a framework by which to measure RAS performance on Red Storm.
The Advanced Simulation and Computing (ASC) Distance Computing (DisCom) Wide Area Network (WAN) is a high performance, long distance network environment that is based on the ubiquitous TCP/IP protocol set. However, the Transmission Control Protocol (TCP) and the algorithms that govern its operation were defined almost two decades ago for a network environment vastly different from the DisCom WAN. In this paper we explore and evaluate possible modifications to TCP that purport to improve TCP performance in environments like the DisCom WAN. We also examine a much newer protocol, SCTP (Stream Control Transmission Protocol) that claims to provide reliable network transport while also implementing multi-streaming, multi-homing capabilities that are appealing in the DisCom high performance network environment. We provide performance comparisons and recommendations for continued development that will lead to network communications protocol implementations capable of supporting the coming ASC Petaflop computing environments.
An experimental study was conducted to measure the mechanical properties of the Thermal Protection System (TPS) materials used for the Space Shuttle. Three types of TPS materials (LI-900, LI-2200, and FRCI-12) were tested in 'in-plane' and 'out-of-plane' orientations. Four types of quasi-static mechanical tests (uniaxial tension, uniaxial compression, uniaxial strain, and shear) were performed under low (10{sup -4} to 10{sup -3}/s) and intermediate (1 to 10/s) strain rate conditions. In addition, split Hopkinson pressure bar tests were conducted to obtain the strength of the materials under a relatively higher strain rate ({approx}10{sup 2} to 10{sup 3}/s) condition. In general, TPS materials have higher strength and higher Young's modulus when tested in 'in-plane' than in 'through-the-thickness' orientation under compressive (unconfined and confined) and tensile stress conditions. In both stress conditions, the strength of the material increases as the strain rate increases. The rate of increase in LI-900 is relatively small compared to those for the other two TPS materials tested in this study. But, the Young's modulus appears to be insensitive to the different strain rates applied. The FRCI-12 material, designed to replace the heavier LI-2200, showed higher strengths under tensile and shear stress conditions. But, under a compressive stress condition, LI-2200 showed higher strength than FRCI-12. As far as the modulus is concerned, LI-2200 has higher Young's modulus both in compression and in tension. The shear modulus of FRCI-12 and LI-2200 fell in the same range.
An unavoidable by-product of a metallic structure's use is the appearance of crack and corrosion flaws. Economic barriers to the replacement of these structures have created an aging infrastructure and placed even greater demands on efficient and safe repair methods. In the past decade, an advanced composite repair technology has made great strides in commercial aviation use. Extensive testing and analysis, through joint programs between the Sandia Labs FAA Airworthiness Assurance Center and the aviation industry, have proven that composite materials can be used to repair damaged aluminum structure. Successful pilot programs have produced flight performance history to establish the durability of bonded composite patches as a permanent repair on commercial aircraft structures. With this foundation in place, this effort is adapting bonded composite repair technology to civil structures. The use of bonded composite doublers has the potential to correct the difficulties associated with current repair techniques and the ability to be applied where there are no rehabilitation options. It promises to be cost-effective with minimal disruption to the users of the structure. This report concludes a study into the application of composite patches on thick steel structures typically used in mining operations. Extreme fatigue, temperature, erosive, and corrosive environments induce an array of equipment damage. The current weld repair techniques for these structures provide a fatigue life that is inferior to that of the original plate. Subsequent cracking must be revisited on a regular basis. The use of composite doublers, which do not have brittle fracture problems such as those inherent in welds, can help extend the structure's fatigue life and reduce the equipment downtime. Two of the main issues for adapting aircraft composite repairs to civil applications are developing an installation technique for carbon steel and accommodating large repairs on extremely thick structures. This study developed and proved an optimum field installation process using specific mechanical and chemical surface preparation techniques coupled with unique, in-situ heating methods. In addition, a comprehensive performance assessment of composite doubler repairs was completed to establish the viability of this technology for large, steel structures. The factors influencing the durability of composite patches in severe field environments were evaluated along with related laminate design issues.
A validation study has been conducted for a turbulence model used to close the temporally filtered Navier Stokes (TFNS) equations. A turbulence model was purposely built to support fire simulations under the Accelerated Strategic Computing (ASC) program. The model was developed so that fire transients could be simulated and it has been implemented in SIERRA/Fuego. The model is validated using helium plume data acquired for the Weapon System Certification Campaign (C6) program in the Fire Laboratory for Model Accreditation and Experiments (FLAME). The helium plume experiments were chosen as the first validation problem for SIERRA/Fuego because they embody the first pair-wise coupling of scalar and momentum fields found in fire plumes. The validation study includes solution verification through grid and time step refinement studies. A formal statistical comparison is used to assess the model uncertainty. The metric uses the centerline vertical velocity of the plume. The results indicate that the simple model is within the 95% confidence interval of the data for elevations greater than 0.4 meters and is never more than twice the confidence interval from the data. The model clearly captures the dominant puffing mode in the fire but under resolves the vorticity field. Grid dependency of the model is noted.
The use of surrogate models to approximate computationally expensive simulation models, e.g., large comprehensive finite element models, is widespread. Applications include surrogate models for design, sensitivity analysis, and/or uncertainty quantification. Typically, a surrogate model is defined by a postulated functional form; values for the surrogate model parameters are estimated using results from a limited number of solutions to the comprehensive model. In general, there may be multiple surrogate models, each defined by possibly a different functional form, consistent with the limited data from the comprehensive model. We refer to each as a candidate surrogate model. Methods are developed and applied to select the optimal surrogate model from the collection of candidate surrogate models. The classical approach is to select the surrogate model that best fits the data provided by the comprehensive model; this technique is independent of the model use and, therefore, may be inappropriate for some applications. The proposed approach applies techniques from decision theory, where postulated utility functions are used to quantify the model use. Two applications are presented to illustrate the methods. These include surrogate model selection for the purpose of: (1) estimating the minimum of a deterministic function, and (2) the design under uncertainty of a physical system.
The conclusions of this paper are: (1) Adsorption/desorption on bulk unmodified zeolites showed isoprene adsorbed by zeolite-L and n-pentane adsorbed by zeolite-Y and ZSM-5; (2) Bulk carbonization is used to passivate zeolite activity toward organic adsorption/decomposition; (3) Based on the bulk modified zeolite separation results, we have determined that the MFI type has the most potential for isoprene enrichment; (4) Modified MFI type membrane are jointly made by Sandia and the Univ. of Colorado. Separation experiments are performed by Goodyear Chemical; (5) Isoprene/n-pentane separations have been demonstrated by using both zeolite membranes and modified bulk zeolites at various temperatures on the Goodyear Pilot-scale unit; and (6) Target zeolite membrane separations values of 6.7% isoprene enrichment have been established by economic analysis calculations by Burns & McDonnell.
We consider four asynchronous parallel algorithms for Implicit Monte Carlo (IMC) thermal radiation transport on spatially decomposed meshes. Two of the algorithms are from the production codes KULL from Lawrence Livermore National Laboratory and Milagro from Los Alamos National Laboratory. Improved versions of each of the existing algorithms are also presented. All algorithms were analyzed in an implementation of the KULL IMC package in ALEGRA, a Sandia National Laboratory high energy density physics code. The improved Milagro algorithm performed the best by scaling almost linearly out to 244 processors for well load balanced problems.
The success of Lagrangian contact modeling leads one to believe that important aspects of this capability may be used for multi-material modeling when only a portion of the simulation can be represented in a Lagrangian frame. We review current experience with two dual mesh technologies where one of these meshes is a Lagrangian mesh and the other is an Arbitrary Lagrangian/Eulerian (ALE) mesh. These methods are cast in the framework of an operator-split ALE algorithm where a Lagrangian step is followed by a remesh/remap step. An interface-coupled methodology is considered first. This technique is applicable to problems involving contact between materials of dissimilar compliance. The technique models the more compliant (soft) material as ALE while the less compliant (hard) material and associated interface are modeled in a Lagrangian fashion. Loads are transferred between the hard and soft materials via explicit transient dynamics contact algorithms. The use of these contact algorithms remove the requirement of node-tonode matching at the soft-hard interface. In the context of the operator-split ALE algorithm, a single Lagrangian step is performed using a mesh to mesh contact algorithm. At the end of the Lagrangian step the meshes will be slightly offset at the interface but non-interpenetrating. The ALE mesh nodes at the interface are then remeshed to their initial location relative to the Lagrangian body faces and the ALE mesh is smoothed, translated and rotated to follow Lagrangian body. Robust remeshing in the ALE region is required for success of this algorithm, and we describe current work in this area. The second method is an overlapping grid methodology that requires mapping of information between a Lagrangian mesh and an ALE mesh. The Lagrangian mesh describes a relatively hard body that interacts with softer material contained in the ALE mesh. A predicted solution for the velocity field is performed independently on both meshes. Element-centered velocity and momentum are transferred between the meshes using the volume transfer capability implemented in contact algorithms. Data from the ALE mesh is mapped to a phantom mesh that surrounds the Lagrangian mesh, providing for the reaction to the predicted motion of the Lagrangian material. Data from the Lagrangian mesh is mapped directly to the ALE mesh. A momentum balance is performed on both meshes to adjust the velocity field to account for the interaction of the material from the other mesh. Subsequent, remeshing and remapping of the ALE mesh is performed to allow large deformation of the softer material. We overview current progress using this approach and discuss avenues for future research and development.
Study of the triggered plasma opening switch (TPOS) characteristics is in progress via an ion current collection diagnostic (ICCD), in addition to offline apparatus. This initial ion current collection diagnostic has been designed, fabricated, and tested on the TPOS in order to explore the opening profile of the main switch. The initial ion current collection device utilizes five collectors which are positioned perpendicularly to the main switch stage in order to collect radially traveling ions. It has been shown through analytical prowess that this specific geometry can be treated as a planar case of the Child-Langmuir law with only a 6% deviation from the cylindrical case. Additionally, magnetostatic simulations with self consistent space charge emitting surfaces of the main switch using the Trak code are under way. It is hoped that the simulations will provide evidence in support of both the analytical derivations and experimental data. Finally, an improved design of the ICCD (containing 12 collectors in the axial direction) is presently being implemented.
We provide a common framework for compatible discretizations using algebraic topology to guide our analysis. The main concept is the natural inner product on cochains, which induces a combinatorial Hodge theory. The framework comprises of mutually consistent operations of differentiation and integration, has a discrete Stokes theorem, and preserves the invariants of the DeRham cohomology groups. The latter allows for an elementary calculation of the kernel of the discrete Laplacian. Our framework provides an abstraction that includes examples of compatible finite element, finite volume and finite difference methods. We describe how these methods result from the choice of a reconstruction operator and when they are equivalent.
The overlap of computation and communication has long been considered to be a significant performance benefit for applications. Similarly, the ability of the Message Passing Interface (MPI) to make independent progress (that is, to make progress on outstanding communication operations while not in the MPI library) is also believed to yield performance benefits. Using an intelligent network interface to offload the work required to support overlap and independent progress is thought to be an ideal solution, but the benefits of this approach have not been studied in depth at the application level. This lack of analysis is complicated by the fact that most MPI implementations do not sufficiently support overlap or independent progress. Recent work has demonstrated a quantifiable advantage for an MPI implementation that uses offload to provide overlap and independent progress. The study is conducted on two different platforms with each having two MPI implementations (one with and one without independent progress). Thus, identical network hardware and virtually identical software stacks are used. Furthermore, one platform, ASCI Red, allows further separation of features such as overlap and offload. Thus, this paper extends previous work by further qualifying the source of the performance advantage: offload, overlap, or independent progress.
Over the last decade and a half, tabu search algorithms for machine scheduling have gained a near-mythical reputation by consistently equaling or establishing state-of-the-art performance levels on a range of academic and real-world problems. Yet, despite these successes, remarkably little research has been devoted to developing an understanding of why tabu search is so effective on this problem class. In this paper, we report results that provide significant progress in this direction. We consider Nowicki and Smutnicki's i-TSAB tabu search algorithm, which represents the current state-of-the-art for the makespan-minimization form of the classical jobshop scheduling problem. Via a series of controlled experiments, we identify those components of i-TSAB that enable it to achieve state-of-the-art performance levels. In doing so, we expose a number of misconceptions regarding the behavior and/or benefits of tabu search and other local search metaheuristics for the job-shop problem. Our results also serve to focus future research, by identifying those specific directions that are most likely to yield further improvements in performance.
In this paper, we analyze the relationship between pool maintenance schemes, long-term memory mechanisms, and search space structure, with the goal of placing metaheuristic design on a more concrete foundation.
High-power Z pinches on Sandia National Laboratories Z facility can be used in a variety of experiments to radiatively heat samples placed some distance away from the Z-pinch plasma. In such experiments, the heating radiation spectrum is influenced by both the Z-pinch emission and the re-emission of radiation from the high-Z surfaces that make up the Z-pinch diode. To test the understanding of the amplitude and spectral distribution of the heating radiation, thin foils containing both Al and MgF{sub 2} were heated by a 100-130 TW Z pinch. The heating of these samples was studied through the ionization distribution in each material as measured by x-ray absorption spectra. The resulting plasma conditions are inferred from a least-squares comparison between the measured spectra and calculations of the Al and Mg 1s {yields} 2p absorption over a large range of temperatures and densities. These plasma conditions are then compared to radiation-hydrodynamics simulations of the sample dynamics and are found to agree within 1{sigma} to the best-fit conditions. This agreement indicates that both the driving radiation spectrum and the heating of the Al and MgF{sub 2} samples is understood within the accuracy of the spectroscopic method.
The mission of Radiographic Integrated Test Stand-6 (RITS-6) facility is to provide the underlying science and technology for pulsed-power-driven flash radiographic X-ray sources for the National Nuclear Security Administration (NNSA). Flash X-ray radiography is a penetrating diagnostic to discern the internal structure in dynamic experiments. Short (~50 nanosecond (ns) duration) bursts of very high intensity X-rays from mm-scale source sizes are required at a variety of voltages to address this mission. RITS-6 was designed and is used to both develop the accelerator technology needed for these experiments and serves as the principal test stand to develop the high intensity electron beam diodes that generate the required X-ray sources. RITS is currently in operation with three induction cavities (RITS-3) with a maximum voltage output of 5.5 MV and is classified as a low hazard non-nuclear facility in accordance with CPR 400.1.1, Chapter 13, Hazards Identification/Analysis and Risk Management. The facility will be expanded from three to six cavities (RITS-6) effectively doubling the operating voltage. The increase in the operating voltage to above 10 MV has resulted in RITS-6 being classified as an accelerator facility. RITS-6 will come under DOE Order 420.2B, Safety of Accelerator Facilities. The hazards of RITS are detailed in the "Safety Assessment Document for the Radiographic Integrated Test Stand Facility." The principal non-industrial hazard is prompt x-ray radiation. As the operating voltage is increased, both the penetration power and the total amount (dose) of x-rays are increased, thereby increasing the risk to local personnel. Fixed site shielding (predominantly concrete walls and a steel/lead skyshine shield) is used to attenuate these x-rays and mitigate this risk. This SAND Report details the anticipated x-ray doses, the shielding design, and the anticipated x-ray doses external to this shielding structure both in areas where administrative access control restricts occupation and in adjacent uncontrolled areas.
The reinforced carbon-carbon (RCC) heat shield components on the Space Shuttle's wings must withstand harsh atmospheric reentry environments where the wing leading edge can reach temperatures of 3,000 F. Potential damage includes impact damage, micro cracks, oxidation in the silicon carbide-to-carbon-carbon layers, and interlaminar disbonds. Since accumulated damage in the thick, carbon-carbon and silicon-carbide layers of the heat shields can lead to catastrophic failure of the Shuttle's heat protection system, it was essential for NASA to institute an accurate health monitoring program. NASA's goal was to obtain turnkey inspection systems that could certify the integrity of the Shuttle heat shields prior to each mission. Because of the possibility of damaging the heat shields during removal, the NDI devices must be deployed without removing the leading edge panels from the wing. Recently, NASA selected a multi-method approach for inspecting the wing leading edge which includes eddy current, thermography, and ultrasonics. The complementary superposition of these three inspection techniques produces a rigorous Orbiter certification process that can reliably detect the array of flaws expected in the Shuttle's heat shields. Sandia Labs produced an in-situ ultrasonic inspection method while NASA Langley developed the eddy current and thermographic techniques. An extensive validation process, including blind inspections monitored by NASA officials, demonstrated the ability of these inspection systems to meet the accuracy, sensitivity, and reliability requirements. This report presents the ultrasonic NDI development process and the final hardware configuration. The work included the use of flight hardware and scrap heat shield panels to discover and overcome the obstacles associated with damage detection in the RCC material. Optimum combinations of custom ultrasonic probes and data analyses were merged with the inspection procedures needed to properly survey the heat shield panels. System features were introduced to minimize the potential for human factors errors in identifying and locating the flaws. The in-situ NDI team completed the transfer of this technology to NASA and USA employees so that they can complete 'Return-to-Flight' certification inspections on all Shuttle Orbiters prior to each launch.
Molecular-dynamics simulations are used to sample the single-chain form factor of labelled sub-chains in model polymer networks under elongational strain. We observe very similar results for randomly cross-linked and for randomly end-linked networks with the same average strand length and see no indication of lozenge-like scattering patterns reported for some experimental systems. Our data analysis shows that a recent variant of the tube model quantitatively describes scattering in the Guinier regime as well as the macroscopic elastic properties. The observed failure of the theory outside the Guinier regime is shown to be due to non-Gaussian pair-distance distributions.
Numerous technologies including solid-state lighting, displays, and traffic signals can benefit from efficient, color-selectable light sources that are driven electrically. Semiconductor nanocrystals are attractive types of chromophores that combine size-controlled emission colors and high emission efficiencies with excellent photostability and chemical flexibility. Applications of nanocrystals in light-emitting technologies, however, have been significantly hindered by difficulties in achieving direct electrical injection of carriers. Here we report the first successful demonstration of electroluminescence from an all-inorganic, nanocrystal-based architecture in which semiconductor nanocrystals are incorporated into a p-n junction formed from GaN injection layers. The critical step in the fabrication of these nanocrystal/GaN hybrid structures is the use of a novel deposition technique, energetic neutral atom beam lithography/epitaxy, that allows for the encapsulation of nanocrystals within a GaN matrix without adversely affecting either the nanocrystal integrity or its luminescence properties. We demonstrate electroluminescence (injection efficiencies of at least 1%) in both single- and two-color regimes using structures comprising either a single monolayer or a bilayer of nanocrystals.
Large-scale three dimensional molecular dynamics simulations of hopper flow are presented. The flow rate of the system is controlled by the width of the aperture at the bottom. As the steady-state flow rate is reduced, the force distribution P(f) changes only slightly, while there is a large change in the impulse distribution P(i). In both cases, the distributions show an increase in small forces or impulses as the systems approach jamming, the opposite of that seen in previous Lennard-Jones simulations. This occurs dynamically as well for a hopper that transitions from a flowing to a jammed state over time. The final jammed P(f) is quite distinct from a poured packing P(f) in the same geometry. The change in P(i) is a much stronger indicator of the approach to jamming. The formation of a peak or plateau in P(f) at the average force is not a general feature of the approach to jamming.
Polysilane materials exhibit large photo-induced refractive index changes under low incident optical fluences, making them attractive candidates for applications in which rapid patterning of photonic device structures is desired immediately prior to their use. This agile fabrication strategy for integrated photonics inherently requires that optical exposure, and associated material response, occurs in nonlaboratory environments, motivating the study of environmental conditions on the photoinduced response of the material. The present work examines the impact of atmosphere on the photosensitive response of poly(methylphenylsilane) (PMPS) thin films in terms of both photoinduced absorption change and refractive index modification. Material was subjected to UV light exposure resonant with the lowest energy optical transition associated with the conjugated Si-Si backbone. Exposures were performed in both aerobic and anaerobic atmospheres (oxygen, air, nitrogen, and 5% H{sub 2}/95% N{sub 2}). The results clearly demonstrate that the photosensitive response of this model polysilane material was dramatically affected by local environment, exhibiting a photoinduced refractive index change, when exposed under an oxygen containing atmosphere, that was twice that observed under anaerobic conditions. This effect is discussed in terms of photo-oxidation processes within the polysilane structure and in the context of the need for predictable photosensitive refractive index change in varied photoimprinting environments.
A novel dual stage chemiluminescence detection system incorporating individually controlled hot stages has been developed and applied to probe for material interaction effects during polymer degradation. Utilization of this system has resulted in experimental confirmation for the first time that in an oxidizing environment a degrading polymer A (in this case polypropylene, PP) is capable of infecting a different polymer B (in this case polybutadiene, HTPB) over a relatively large distance. In the presence of the infectious degrading polymer A, the thermal degradation of polymer B is observed over a significantly shorter time period. Consistent with infectious volatiles from material A initiating the degradation process in material B it was demonstrated that traces (micrograms) of a thermally sensitive peroxide in the vicinity of PP could induce degradation remotely. This observation documents cross-infectious phenomena between different polymers and has major consequences for polymer interactions, understanding fundamental degradation processes and long-term aging effects under combined material exposures.
COBIT is a set of documents that provides guidance for computer security. This report introduces COBIT by answering the following questions, after first defining acronyms and presenting definitions: 1. Why is COBIT valuable? 2. What is COBIT?, and 3. What documents are related to COBIT? (The answer to the last question constitutes the bulk of this report.) This report also provides more detailed review of three documents. The first two documents--COBIT Security Baseline{trademark} and COBIT Quickstart{trademark}--are initial documents, designed to get people started. The third document-Control Practices-is a ''final'' document, so to speak, designed to take people all the way down into the details. Control Practices is the detail.
Sandia National Laboratories Z Refurbishment (ZR) Project formally began in August 2002 to increase the Z Accelerator's utilization by providing the capability to perform more shots, improve precision and pulse shape variability, increase delivered current, and accomplish the improvements with minimal disruption to Z's ongoing programs. A project overview was provided at the 14th International Pulsed Power Conference in 2003. This paper provides an update of the project including architectural changes over the past two years, timeframe for completion, and overall design and fabrication status.
The Mg-Li-N-H system is a very promising hydrogen storage material due to its high capacity, reversibility and moderate operating conditions. Some of thermodynamic and structural properties for this system are characterized here. Pressure-composition isotherms are measured and presented in this paper for absorption-desorption at 220, 200 and 180 C. Powder X-ray diffraction (XRD) and Fourier Transform Infrared (FTIR) analysis were carried out for samples at various degrees of hydrogenation. These results provide information about the structural changes during absorption/desorption. The mixture of (2LiNH{sub 2} + MgH{sub 2}) partially converts to (Mg(NH{sub 2}){sub 2} + 2LiH) when heated at 220 C and 100 bar of hydrogen without undergoing desorption. Based on two distinct parts which appear in all of the pressure-composition isotherms (180-220 C), two reactions taking place isothermally in hydrogen absorption/desorption are proposed for the material starting with (2LiNH{sub 2} + MgH{sub 2}) or (Mg(NH{sub 2}){sub 2} + 2LiH). These reactions include a single solid-phase reaction, corresponding to the sloping region for hydrogen weight percent (Hwt%) smaller than 1.5%, and a multiple-phase reaction, corresponding to a plateau region for Hwt.% > 1.5 in the isotherms. During hydrogen absorption/desorption, the single-solid-phase reaction corresponds to the forming/consuming of NH{sub 2} which is bonded to Li and the multiple-solid-phase reaction corresponds to forming/consuming Mg(NH{sub 2}){sub 2} and LiH. A mechanism for the sorption reactions has been proposed.
The in vivo bone response of 3D periodic hydroxyapatite (HA) scaffolds is investigated. Two groups of HA scaffolds (11 mm diameter x 3.5 mm thick) are fabricated by direct-write assembly of a concentrated HA ink. The scaffolds consist of cylindrical rods periodically arranged into four quadrants with varying separation distances between rods. In the first group, HA rods (250 {micro}m in diameter) are patterned to create pore channels, whose areal dimensions are 250 x 250 {micro}m{sup 2} in quadrant 1, 250 x 500 {micro}m{sup 2} in quadrants 2 and 4, and 500 x 500 {micro}m{sup 2} in quadrant 3. In the second group, HA rods (400 {micro}m in diameter) are patterned to create pore channels, whose areal dimensions of 500 x 500 {micro}m{sup 2} in quadrant 1, 500 x 750 {micro}m{sup 2} in quadrants 2 and 4, and 750 x 750 {micro}m{sup 2} in quadrant 3. Each group of scaffolds is partially densified by sintering at 1200 C prior to being implanted bilaterally in trephine defects of skeletally mature New Zealand White rabbits. Their tissue response is evaluated at 8 and 16 weeks using micro-computed tomography, histology, and scanning electron microscopy. New trabecular bone is conducted rapidly and efficiently across substantial distances within these patterned 3D HA scaffolds. Our observations suggest that HA rods are first coated with a layer of new bone followed by subsequent scaffold infilling via outward and inward radial growth of the coated regions. Direct-write assembly of 3D periodic scaffolds composed of micro-porous HA rods arrayed to produce macro-pores that are size-matched to trabecular bone may represent an optimal strategy for bone repair and replacement structures.
We derive here the form for the exact exchange energy density for a density that decays with Gaussian-type behavior at long range. This functional is intermediate between the B88 and the PW91 exchange functionals. Using this modified functional to match the form expected for Gaussian densities, we propose the X3LYP extended functional. We find that X3LYP significantly outperforms Becke three parameter Lee-Yang-Parr (B3LYP) for describing van der Waals and hydrogen bond interactions, while performing slightly better than B3LYP for predicting heats of formation, ionization potentials, electron affinities, proton affinities, and total atomic energies as validated with the extended G2 set of atoms and molecules. Thus X3LYP greatly enlarges the field of applications for density functional theory. In particular the success of X3LYP in describing the water dimer (with Re and De within the error bars of the most accurate determinations) makes it an excellent candidate for predicting accurate ligand-protein and ligand-DNA interactions.
Molecular compounds-comprised of mechanically interlocked components-such as rotaxanes and catenanes can be designed to display readily controllable internal movements of one component with respect to the other. Since theweak noncovalent bonding interactions that contribute to the template-directed synthesis of such compounds live on between the components thereafter, they can be activated such that the components move in either a linear fashion (rotaxanes) or a rotary manner (catenanes). These molecules can be activated by switching the recognition elements off and on between components chemically, electrically, or optically, such that they perform motions reminiscent of the moving parts in macroscopic machines. This review will highlight how the emergence ofthe mechanical bond in chemistry during the last two decades has brought with it a real prospect of integrating a bottom-up approach, based on molecular design and micro- and nanofabrication, to construct molecular electronic devices that store information at very high densities using minimal power. Although most of the research reported in this review on switchable catenanes and rotaxanes has been carried out in the context of solution-phase mechanical processes, recent results demonstrate that relative mechanical movements between the components in interlocked molecules can be stimulated (a) chemically in Langmuir and Langmuir-Blodgett films, (b) electrochemically as self-assembled monolayers on gold, and (c) electronically within the settings of solid-state devices. Not only has reversible, electronically driven switching been observed in devices incorporating a bistable [2]catenane, but a crosspoint random access memory circuit has been fabricated using an amphiphilic, bistable [2]rotaxane. The experiments provide strong evidence that switchable catenanes and rotaxanes operate mechanically in a soft-matter environment and can withstand simple device-processing steps. Studies on single-walled carbon nanotubes used as one of the electrodes in molecular switch tunnel junctions have revealed that interfacial chemical interactions involving electrodes containing carbon, silicon, and oxygen are good choices when carrying out molecular electronics on the class of rotaxane- and catenane-based molecules reported in this review. This conclusion is supported by differential conductance measurements (at 4K) made with single-molecule transistors using the break-junction method. It transpires that the electronic transport properties in such devices are more sensitive to the chemical nature of the molecule-electrode contacts than the details of the molecules' electronic structure away from the contacts. This result has profound implications for molecular electronics and highlights the importance of also considering the molecules and the electrodes as an integrated system. It all adds up to an integrated systems-oriented approach to nanotechnology that finds its inspiration in the transfer of concepts like molecular recognition from the life sciences into materials science and provides a model for how, in principle, to transfer elements of traditional chemistry to technology platforms that are being developed on the nanoscale. Before there can be any serious prospect of a technology, there has to be some good, sound science in the making. Molecular electronics is very much in its infancy and, as such, it can be expected to give rise to a great deal of intellectually stimulating science before it stands half a chance of becoming a viable companion to silicon-based technology.
We use the density functional theory and x-ray and neutron diffraction to investigate the crystal structures and reaction mechanisms of intermediate phases likely to be involved in decomposition of the potential hydrogen storage material LiAlH{sub 4}. First, we explore the decomposition mechanism of monoclinic LiAlH4 into monoclinic Li{sub 3}AlH{sub 6} plus face-centered cubic (fcc) Al and hydrogen. We find that this reaction proceeds through a five-step mechanism with an overall activation barrier of 36.9 kcal/mol. The simulated x ray and neutron diffraction patterns from LiAlH{sub 4} and Li{sub 3}AlH{sub 6} agree well with experimental data. On the other hand, the alternative decomposition of LiAlH{sub 4} into LiAlH2 plus H2 is predicted to be unstable with respect to that through Li{sub 3}AlH{sub 6}. Next, we investigate thermal decomposition of Li{sub 3}AlH{sub 6} into fcc LiH plus Al and hydrogen, occurring through a four-step mechanism with an activation barrier of 17.4 kcal/mol for the rate-limiting step. In the first and second steps, two Li atoms accept two H atoms from AlH{sub 6} to form the stable Li-H-Li-H complex. Then, two sequential H2 desorption steps are followed, which eventually result in fcc LiH plus fcc Al and hydrogen: Li{sub 3}AlH{sub 6}(monoclinic) {yields} 3 LiH(fcc) + Al(fcc) + 3/2 H{sub 2} is endothermic by 15.8 kcal/mol. The dissociation energy of 15.8 kcal/mol per formula unit compares to experimental enthalpies in the range of 9.8-23.9 kcal/mol. Finally, we explore thermal decomposition of LiH, LiH(s) + Al(s) {yields} LiAl(s) + 1/2 H{sub 2}(g) is endothermic by 4.6 kcal/mol. The B32 phase, which we predict as the lowest energy structure for LiAl, shows covalent bond characters in the Al-Al direction. Additionally, we determine that transformation of LiH plus Al into LiAlH is unstable with respect to transformation of LiH through LiAl.
Molecular dynamics calculations are performed to study the effect of deformation sequence and history on the inelastic behavior of copper interfaces on the nanoscale. An asymmetric 45 deg tilt bicrystal interface is examined, representing an idealized high-angle grain boundary interface. The interface model is subjected to three different deformation paths: tension then shear, shear then tension, and combined proportional tension and shear. Analysis shows that path-history dependent material behavior is confined within a finite layer of deformation around the bicrystal interface. The relationships between length scale and interface properties, such as the thickness of the path-history dependent layer and the interface strength, are discussed in detail.
A conforming representation composed of 2D finite elements and finite Fourier series is applied to 3D nonlinear non-ideal magnetohydrodynamics using a semi-implicit time-advance. The self-adjoint semi-implicit operator and variational approach to spatial discretization are synergistic and enable simulation in the extremely stiff conditions found in high temperature plasmas without sacrificing the geometric flexibility needed for modeling laboratory experiments. Growth rates for resistive tearing modes with experimentally relevant Lundquist number are computed accurately with time-steps that are large with respect to the global Alfven time and moderate spatial resolution when the finite elements have basis functions of polynomial degree (p) two or larger. An error diffusion method controls the generation of magnetic divergence error. Convergence studies show that this approach is effective for continuous basis functions with p {ge} 2, where the number of test functions for the divergence control terms is less than the number of degrees of freedom in the expansion for vector fields. Anisotropic thermal conduction at realistic ratios of parallel to perpendicular conductivity (x{parallel}/x{perpendicular}) is computed accurately with p {ge} 3 without mesh alignment. A simulation of tearing-mode evolution for a shaped toroidal tokamak equilibrium demonstrates the effectiveness of the algorithm in nonlinear conditions, and its results are used to verify the accuracy of the numerical anisotropic thermal conduction in 3D magnetic topologies.