A newly developed Kolsky tension bar
Conference Proceedings of the Society for Experimental Mechanics Series
Abstract not provided.
Conference Proceedings of the Society for Experimental Mechanics Series
Abstract not provided.
IFAC Proceedings Volumes (IFAC-PapersOnline)
Holonomically constrained multibody systems constitute an important class of robotic systems. Under holonomic constraints motion is restricted to a constrained motion manifold within configuration space. The task-level control scheme presented here provides an effective approach to executing motion control in the presence of constraints. This scheme also allows for the simultaneous specification of desired constraint forces, given sufficient actuation, by exposing both motion coordinates and constraint forces within the control formalism. This allows for substantial flexibility in control synthesis and, thus, this methodology can be extensively applied to a wide range of holonomically constrained systems. An example is presented that demonstrates the efficacy of the analytical framework and its ease of implementation in practical robotic control problems involving constraints. © 2011 IFAC.
Fusion Engineering and Design
Several advanced He-cooled W-alloy divertor concepts have been considered recently for power plant applications. They range in scale from a plate configuration with characteristic dimension of the order of 1 m, to the ARIES-CS T-tube configuration with characteristic dimension of the order of 10 cm, to the EU FZK finger concept with characteristic dimension of the order of 1.5 cm. The trend in moving to smaller-scale units is aimed at minimizing the thermal stress under a given heat load; however, this is done at the expense of increasing the number of units, with a corresponding impact on the reliability of the system. The possibility of optimizing the design by combining different configurations in an integrated design, based on the anticipated divertor heat flux profile, also has been proposed. Several heat transfer enhancement schemes have been considered in these designs, including slot jet, multi-hole jet, porous media and pin arrays. This paper summarizes recent US efforts in this area, including optimization and assessment of the different concepts under power plant conditions. Analytical and experimental studies of the concepts and cooling schemes are presented. Key issues are identified and discussed to help guide future R&D, including fabrication, joining, material behavior under the fusion environment and impact of design choice on reliability. © 2010 Elsevier B.V.
Conference Proceedings of the Society for Experimental Mechanics Series
The use of uniaxial strain ramp loading experiments to measure strength at extremely high strain rates is discussed. The technique is outlined and issues associated with it are examined. Results for 6061-T6 aluminum are presented that differ from the conventional view of strain rate sensitivity in aluminum alloys. ©2010 Society for Experimental Mechanics Inc.
Journal of Computational Physics
We develop and study the high-order conservative and monotone optimization-based remap (OBR) of a scalar conserved quantity (mass) between two close meshes with the same connectivity. The key idea is to phrase remap as a global inequality-constrained optimization problem for mass fluxes between neighboring cells. The objective is to minimize the discrepancy between these fluxes and the given high-order target mass fluxes, subject to constraints that enforce physically motivated bounds on the associated primitive variable (density). In so doing, we separate accuracy considerations, handled by the objective functional, from the enforcement of physical bounds, handled by the constraints. The resulting OBR formulation is applicable to general, unstructured, heterogeneous grids. Under some weak requirements on grid proximity, but not on the cell types, we prove that the OBR algorithm is linearity preserving in one, two and three dimensions. The paper also examines connections between the OBR and the recently proposed flux-corrected remap (FCR), Liska et al. [1]. We show that the FCR solution coincides with the solution of a modified version of OBR (M-OBR), which has the same objective but a simpler set of box constraints derived by using a "worst-case" scenario. Because M-OBR (FCR) has a smaller feasible set, preservation of linearity may be lost and accuracy may suffer for some grid configurations. Our numerical studies confirm this, and show that OBR delivers significant increases in robustness and accuracy. Preliminary efficiency studies of OBR reveal that it is only a factor of 2.1 slower than FCR, but admits 1.5 times larger time steps. © 2011 Elsevier Inc.
Ceramic Transactions
Radioactive iodine, 129I, a component of spent nuclear fuel, is of particular concern due to its extremely long half-life, its potential mobility in the environment and its effects on human health. In the spent fuel reprocessing scheme under consideration, the 129I is released in gaseous form and collected using Ag-loaded zeolites such as Ag-mordenite. The 129I can react with the Ag to form insoluble AgI. We have investigated the use of low temperature-sintering glass powders mixed with either AgI or AgI-zeolite to produce dense waste forms that can be processed at 500°C, where AgI volatility is low. These mixtures can contain up to 20 wt% crushed AgI-mordenite or up to 50 wt% AgI. Both types of waste forms were found to have the high iodine leach resistance in these initial studies.
Springer Series in Geomechanics and Geoengineering
This work uses a bifurcation approach to develop theoretical predictions for deformation band formation for a suite of true triaxial tests on Castlegate sandstone. In particular, the influence of the intermediate principal stress on strain localization is examined. Using common simplifying assumptions (localization occurs at peak stress, and the failure surface is similar to the yield surface), theoretical predictions captured the overall trends observed experimentally. However, agreement between predicted and observed band orientations for individual specimens was varied. This highlights the importance of detailed data analyses to accurately determine key material parameter values at the inception of localization.
Journal of Microscopy
A low-hazard approach is presented to prepare metallographic cross-sections of moisture-sensitive battery components. The approach is tailored for evaluation of thermal (molten salt) batteries composed of thin pressed-powder pellets, but has general applicability to other battery electrochemistries. Solution-cast polystyrene is used to encapsulate cells before embedding in epoxy. Nonaqueous grinding and polishing are performed in an industrial dry room to increase throughput. Lapping oil is used as a lubricant throughout grinding. Hexane is used as the solvent throughout processing; occupational exposure levels are well below the limits. Light optical and scanning electron microscopy on cross-sections are used to analyse a thermal battery cell. Spatially resolved X-ray diffraction on oblique angle cut cells complement the metallographic analysis. Published 2011. This article is a US Government work and is in the public domain in the USA.
Measurement Science and Technology
A new Kolsky tension bar has been re-designed and developed at Sandia National Laboratories, CA. The new design uses the concept that a solid striker is fired to impact an end cap attached to the open end of the gun barrel to generate dynamic tensile loading. The gun barrel here serves as part of the loading device. The incident bar that is connected to the gun barrel and the transmission bar follow the design similar to the Kolsky compression bar. The bar supporting and aligning systems are the same as those in the Kolsky compression bar design described by Song et al (2009 Meas. Sci. Technol. 20 115701). Due to the connection complication among the gun barrel, bars and specimen, stress-wave propagation in the new Kolsky tension bar system is comprehensively analyzed. Based on the stress-wave analysis, the strain gage location on the incident bar needs to be carefully determined. A highly precise laser-beam measurement system is recommended to directly measure the displacement of the incident bar end. Dynamic tensile characterization of a 4330-V steel using this new Kolsky tension bar is presented as an example. © 2011 IOP Publishing Ltd.
Conference Proceedings of the Society for Experimental Mechanics Series
There occasionally occur situations in field measurements where direct optical access to the area of interest is not possible. In these cases the borescope is the standard method of imaging. Furthermore, if shape, displacement, or strain are desired in these hidden locations, it would be advantageous to be able to do digital image correlation (DIC) through the borescope. This paper will present the added complexities and errors associated with imaging through a borescope for DIC. Discussion of non-radial distortions and their effects on the measurements, along with a possible correction scheme will be discussed.
Conference Proceedings of the Society for Experimental Mechanics Series
Qualification vibration tests are routinely performed on prototype hardware. Model validation cannot generally be done from the qualification vibration test because of multiple uncertainties, particularly the uncertainty of the boundary condition. These uncertainties can have a dramatic effect on the modal parameters extracted from the data. It would be valuable if one could extract a modal model of the test article with a known boundary condition from the qualification vibration test. This work addresses an attempt to extract fixed base modes on a 1.2 meter tall test article in a random vibration test on a 1.07 meter long slip table. The slip table was supported by an oil film on a granite block and driven by a 111,000 Newton shaker, hereinafter denoted as the big shaker. This approach requires obtaining dominant characteristic shapes of the bare table. A vibration test on the full system is performed. The characteristic table generalized coordinates are constrained to zero to obtain fixed base results. Results determined the first three fixed base bending mode frequencies excited by the shaker within four percent. A stick-slip nonlinearity in the shaker system had a negative effect on the final damping ratios producing large errors. An alternative approach to extracting the modal parameters directly from transmissibilities proved to be more accurate. Even after accounting for distortion due to the Harm window, it appears that dissipation physics in the bare shaker table provide additional damping beyond the true fixed base damping.
2011 Proceedings of the 13th Workshop on Algorithm Engineering and Experiments, ALENEX 2011
One of the most influential results in network analysis is that many natural networks exhibit a power-law or log-normal degree distribution. This has inspired numerous generative models that match this property. However, more recent work has shown that while these generative models do have the right degree distribution, they are not good models for real life networks due to their differences on other important metrics like conductance. We believe this is, in part, because many of these real-world networks have very different joint degree distributions, i.e. the probability that a randomly selected edge will be between nodes of degree k and l. Assortativity is a sufficient statistic of the joint degree distribution, and it has been previously noted that social networks tend to be assortative, while biological and technological networks tend to be disassortative. We suggest that the joint degree distribution of graphs is an interesting avenue of study for further research into network structure. We provide a simple greedy algorithm for constructing simple graphs from a given joint degree distribution, and a Monte Carlo Markov Chain method for sampling them. We also show that the state space of simple graphs with a fixed degree distribution is connected via endpoint switches. We empirically evaluate the mixing time of this Markov Chain by using experiments based on the autocorrelation of each edge. Copyright © 2011 by SIAM.
Conference Proceedings of the Society for Experimental Mechanics Series
Recently, a new substructure coupling/uncoupling approach has been introduced, called Modal Constraints for Fixture and Subsystem (MCFS) [Allen, Mayes, & Bergman, Journal of Sound and Vibration, vol. 329, 2010]. This method reduces ill-conditioning by imposing constraints on substructure modal coordinates instead of the physical interface coordinates. The experimental substructure is tested in a free-free configuration, and the interface is exercised by attaching a flexible fixture. An analytical representation of the fixture is then used to subtract its effects in order to create an experimental model for the subcomponent of interest. However, it has been observed that indefinite mass and stiffness matrices can be obtained for the experimental substructure in some situations. This paper presents two simple metrics that can be used by the analyst to determine the cause of indefinite mass or stiffness matrices after substructure uncoupling. The metrics rank the experimental and fixture modes based upon their contribution to offending negative eigenvalues. Once the troublesome modes have been identified, they can be inspected and often reveal why the mass has become negative. Two examples are presented to demonstrate the metrics and to illustrate the physical phenomena that they reveal.
Key Engineering Materials
Packaging high power radio frequency integrated circuits (RFICs) in low temperature cofired ceramic (LTCC) presents many challenges. Within the constraints of LTCC fabrication, the design must provide the usual electrical isolation and interconnections required to package the IC, with additional consideration given to RF isolation and thermal management. While iterative design and prototyping is an option for developing RFIC packaging, it would be expensive and most likely unsuccessful due to the complexity of the problem. To facilitate and optimize package design, thermal and mechanical simulations were used to understand and control the critical parameters in LTCC package design. The models were validated through comparisons to experimental results. This paper summarizes an experimentally-validated modeling approach to RFIC package design, and presents some results and key findings. © (2011) Trans Tech Publications, Switzerland.
Journal of Geophysical Research Atmospheres
We characterize the measured electric field-derivative (dE/dt) waveforms of lightning stepped-leader steps from three negative lightning flashes at distances of tens to hundreds of meters. Electromagnetic signatures of leader steps at such close distances have rarely been documented in previous literature. Individual leader-step three-dimensional locations are determined by a dE/dt TOA system. The leader-step field derivative is typically a bipolar pulse with a sharp initial half-cycle of the same polarity as that of the return stroke, followed by an opposite polarity overshoot that decays relatively slowly to background level. This overshoot increases in amplitude relative to the initial peak and becomes dominant as range decreases. The initial peak is often preceded by a "slow front," similar to the slow front that precedes the fast transition to peak in first return stroke dE/dt and E waveforms. The overall step-field waveform duration is typically less than 1 s. The mean initial peak of dE/dt, range-normalized to 100 km, is 7.4 V m -1 s-1 (standard deviation (S.D.), 3.7 V m-1 s-1, N = 103), the mean half-peak width is 33.5 ns (S.D., 11.9 ns, N = 69), and the mean 10-to-90% risetime is 43.6 ns (S.D., 24.2 ns, N = 69). From modeling, we determine the properties of the leader step currents which produced two typical measured field derivatives, and we use one of these currents to calculate predicted leader step E and dE/dt as a function of source range and height, the results being in good agreement with our observations. The two modeled current waveforms had maximum rates of current rise-to-peak near 100 kA s-1, peak currents in the 5-7 kA range, current half-peak widths of about 300 ns, and charge transfers of ∼3 mC. As part of the modeling, those currents were propagated upward at 1.5 × 108 m s-1, with their amplitudes decaying exponentially with a decay height constant of 25 m. Copyright 2011 by the American Geophysical Union.
2011 Conference on Lasers and Electro-Optics: Laser Science to Photonic Applications, CLEO 2011
We demonstrate a pump-probe approach for the detection of organophosphonate compounds on substrates, in which the pump pulse fragments the parent molecule and the released phosphorous monoxide (PO) fragment is probed using laser-induced fluorescence. © 2011 OSA.
RSC Energy and Environment Series
Abstract not provided.
A common purpose for performing an aerodynamic analysis is to calculate the resulting loads on a solid body immersed in the flow. Pressure or heat loads are often of interest for characterizing the structural integrity or thermal survivability of the structure. This document describes two algorithms for tightly coupling the mass, momentum and energy conservation equations for a compressible fluid and the energy conservation equation for heat transfer through a solid. We categorize both approaches as monolithically coupled, where the conservation equations for the fluid and the solid are assembled into a single residual vector. Newton's method is then used to solve the resulting nonlinear system of equations. These approaches are in contrast to other popular coupling schemes such as staggered coupling methods were each discipline is solved individually and loads are passed between as boundary conditions, and demonstrates the viability of the monolithic approach for aeroheating problems.
49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
We discuss recent experiments for the characterization of our femtosecond purerotational CARS facility for observation of Raman transients in N 2 and atmospheric air. The construction of a simplified femtosecond four-wave mixing system with only a single laser source is presented. Pure-rotational Raman transients reveal well-ordered time-domain recurrence peaks associated with the near-uniform spacing of rotational Raman peaks in the spectral domain. Long-time, 100-ps duration observations of the transient Raman polarization are presented, and the observed transients are compared to simulated results. Fourier transformation of the transients reveals two distinct sets of beat frequencies. Simulation results for temperatures from 300-700 K are used to illustrate the temperature sensitivity of the time-domain transients and their Fourier-transform counterparts. And strategies for diagnostics are briefly discussed. These results are being utilized to develop gas-phase measurement strategies for temperature and species concentration.
In this work, we developed a self-organizing map (SOM) technique for using web-based text analysis to forecast when a group is undergoing a phase change. By 'phase change', we mean that an organization has fundamentally shifted attitudes or behaviors. For instance, when ice melts into water, the characteristics of the substance change. A formerly peaceful group may suddenly adopt violence, or a violent organization may unexpectedly agree to a ceasefire. SOM techniques were used to analyze text obtained from organization postings on the world-wide web. Results suggest it may be possible to forecast phase changes, and determine if an example of writing can be attributed to a group of interest.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
SIAM Journal on Scientific Computing
Abstract not provided.
Abstract not provided.
Carbon
Abstract not provided.
Abstract not provided.
Journal of American Chemical Society
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Physical Chemistry A
Abstract not provided.
Journal of Hydrology
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Transactions on Plasma on Images in Plasma Science
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Linear Algebra and Applications
Abstract not provided.
Abstract not provided.
Abstract not provided.
ACS Nano
Abstract not provided.
Abstract not provided.
Journal of Physical Chemistry C
Abstract not provided.
Abstract not provided.
Sandia National Laboratories and General Motors Global Energy Systems team conducted a joint biofuels systems analysis project from March to November 2008. The purpose of this study was to assess the feasibility, implications, limitations, and enablers of large-scale production of biofuels. 90 billion gallons of ethanol (the energy equivalent of approximately 60 billion gallons of gasoline) per year by 2030 was chosen as the book-end target to understand an aggressive deployment. Since previous studies have addressed the potential of biomass but not the supply chain rollout needed to achieve large production targets, the focus of this study was on a comprehensive systems understanding the evolution of the full supply chain and key interdependencies over time. The supply chain components examined in this study included agricultural land use changes, production of biomass feedstocks, storage and transportation of these feedstocks, construction of conversion plants, conversion of feedstocks to ethanol at these plants, transportation of ethanol and blending with gasoline, and distribution to retail outlets. To support this analysis, we developed a 'Seed to Station' system dynamics model (Biofuels Deployment Model - BDM) to explore the feasibility of meeting specified ethanol production targets. The focus of this report is water and its linkage to broad scale biofuel deployment.
Abstract not provided.
Abstract not provided.
Journal of Solar Energy Engineering
Abstract not provided.
Abstract not provided.
Applied Physics B
Abstract not provided.
Nature
Abstract not provided.
Nature
Abstract not provided.
Abstract not provided.
Abstract not provided.
Nuclear Technology
Abstract not provided.
Abstract not provided.
Decision Support Systems
Abstract not provided.
Physical Review Letters
Abstract not provided.
Journal of Physical Chemistry C
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Concurrency and Computation:Practice and Experience
Abstract not provided.
Abstract not provided.
Constructive Approximation
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physical Review B
Abstract not provided.
Internation Journal for Numerical Methods in Fluids
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Combustion and Flame
Abstract not provided.
Abstract not provided.
Abstract not provided.