Radioactive iodine, 129I, a component of spent nuclear fuel, is of particular concern due to its extremely long half-life, its potential mobility in the environment and its effects on human health. In the spent fuel reprocessing scheme under consideration, the 129I is released in gaseous form and collected using Ag-loaded zeolites such as Ag-mordenite. The 129I can react with the Ag to form insoluble AgI. We have investigated the use of low temperature-sintering glass powders mixed with either AgI or AgI-zeolite to produce dense waste forms that can be processed at 500°C, where AgI volatility is low. These mixtures can contain up to 20 wt% crushed AgI-mordenite or up to 50 wt% AgI. Both types of waste forms were found to have the high iodine leach resistance in these initial studies.
This work uses a bifurcation approach to develop theoretical predictions for deformation band formation for a suite of true triaxial tests on Castlegate sandstone. In particular, the influence of the intermediate principal stress on strain localization is examined. Using common simplifying assumptions (localization occurs at peak stress, and the failure surface is similar to the yield surface), theoretical predictions captured the overall trends observed experimentally. However, agreement between predicted and observed band orientations for individual specimens was varied. This highlights the importance of detailed data analyses to accurately determine key material parameter values at the inception of localization.
A low-hazard approach is presented to prepare metallographic cross-sections of moisture-sensitive battery components. The approach is tailored for evaluation of thermal (molten salt) batteries composed of thin pressed-powder pellets, but has general applicability to other battery electrochemistries. Solution-cast polystyrene is used to encapsulate cells before embedding in epoxy. Nonaqueous grinding and polishing are performed in an industrial dry room to increase throughput. Lapping oil is used as a lubricant throughout grinding. Hexane is used as the solvent throughout processing; occupational exposure levels are well below the limits. Light optical and scanning electron microscopy on cross-sections are used to analyse a thermal battery cell. Spatially resolved X-ray diffraction on oblique angle cut cells complement the metallographic analysis. Published 2011. This article is a US Government work and is in the public domain in the USA.
There occasionally occur situations in field measurements where direct optical access to the area of interest is not possible. In these cases the borescope is the standard method of imaging. Furthermore, if shape, displacement, or strain are desired in these hidden locations, it would be advantageous to be able to do digital image correlation (DIC) through the borescope. This paper will present the added complexities and errors associated with imaging through a borescope for DIC. Discussion of non-radial distortions and their effects on the measurements, along with a possible correction scheme will be discussed.
Qualification vibration tests are routinely performed on prototype hardware. Model validation cannot generally be done from the qualification vibration test because of multiple uncertainties, particularly the uncertainty of the boundary condition. These uncertainties can have a dramatic effect on the modal parameters extracted from the data. It would be valuable if one could extract a modal model of the test article with a known boundary condition from the qualification vibration test. This work addresses an attempt to extract fixed base modes on a 1.2 meter tall test article in a random vibration test on a 1.07 meter long slip table. The slip table was supported by an oil film on a granite block and driven by a 111,000 Newton shaker, hereinafter denoted as the big shaker. This approach requires obtaining dominant characteristic shapes of the bare table. A vibration test on the full system is performed. The characteristic table generalized coordinates are constrained to zero to obtain fixed base results. Results determined the first three fixed base bending mode frequencies excited by the shaker within four percent. A stick-slip nonlinearity in the shaker system had a negative effect on the final damping ratios producing large errors. An alternative approach to extracting the modal parameters directly from transmissibilities proved to be more accurate. Even after accounting for distortion due to the Harm window, it appears that dissipation physics in the bare shaker table provide additional damping beyond the true fixed base damping.
Recently, a new substructure coupling/uncoupling approach has been introduced, called Modal Constraints for Fixture and Subsystem (MCFS) [Allen, Mayes, & Bergman, Journal of Sound and Vibration, vol. 329, 2010]. This method reduces ill-conditioning by imposing constraints on substructure modal coordinates instead of the physical interface coordinates. The experimental substructure is tested in a free-free configuration, and the interface is exercised by attaching a flexible fixture. An analytical representation of the fixture is then used to subtract its effects in order to create an experimental model for the subcomponent of interest. However, it has been observed that indefinite mass and stiffness matrices can be obtained for the experimental substructure in some situations. This paper presents two simple metrics that can be used by the analyst to determine the cause of indefinite mass or stiffness matrices after substructure uncoupling. The metrics rank the experimental and fixture modes based upon their contribution to offending negative eigenvalues. Once the troublesome modes have been identified, they can be inspected and often reveal why the mass has become negative. Two examples are presented to demonstrate the metrics and to illustrate the physical phenomena that they reveal.
We characterize the measured electric field-derivative (dE/dt) waveforms of lightning stepped-leader steps from three negative lightning flashes at distances of tens to hundreds of meters. Electromagnetic signatures of leader steps at such close distances have rarely been documented in previous literature. Individual leader-step three-dimensional locations are determined by a dE/dt TOA system. The leader-step field derivative is typically a bipolar pulse with a sharp initial half-cycle of the same polarity as that of the return stroke, followed by an opposite polarity overshoot that decays relatively slowly to background level. This overshoot increases in amplitude relative to the initial peak and becomes dominant as range decreases. The initial peak is often preceded by a "slow front," similar to the slow front that precedes the fast transition to peak in first return stroke dE/dt and E waveforms. The overall step-field waveform duration is typically less than 1 s. The mean initial peak of dE/dt, range-normalized to 100 km, is 7.4 V m -1 s-1 (standard deviation (S.D.), 3.7 V m-1 s-1, N = 103), the mean half-peak width is 33.5 ns (S.D., 11.9 ns, N = 69), and the mean 10-to-90% risetime is 43.6 ns (S.D., 24.2 ns, N = 69). From modeling, we determine the properties of the leader step currents which produced two typical measured field derivatives, and we use one of these currents to calculate predicted leader step E and dE/dt as a function of source range and height, the results being in good agreement with our observations. The two modeled current waveforms had maximum rates of current rise-to-peak near 100 kA s-1, peak currents in the 5-7 kA range, current half-peak widths of about 300 ns, and charge transfers of ∼3 mC. As part of the modeling, those currents were propagated upward at 1.5 × 108 m s-1, with their amplitudes decaying exponentially with a decay height constant of 25 m. Copyright 2011 by the American Geophysical Union.
A common purpose for performing an aerodynamic analysis is to calculate the resulting loads on a solid body immersed in the flow. Pressure or heat loads are often of interest for characterizing the structural integrity or thermal survivability of the structure. This document describes two algorithms for tightly coupling the mass, momentum and energy conservation equations for a compressible fluid and the energy conservation equation for heat transfer through a solid. We categorize both approaches as monolithically coupled, where the conservation equations for the fluid and the solid are assembled into a single residual vector. Newton's method is then used to solve the resulting nonlinear system of equations. These approaches are in contrast to other popular coupling schemes such as staggered coupling methods were each discipline is solved individually and loads are passed between as boundary conditions, and demonstrates the viability of the monolithic approach for aeroheating problems.
We discuss recent experiments for the characterization of our femtosecond purerotational CARS facility for observation of Raman transients in N 2 and atmospheric air. The construction of a simplified femtosecond four-wave mixing system with only a single laser source is presented. Pure-rotational Raman transients reveal well-ordered time-domain recurrence peaks associated with the near-uniform spacing of rotational Raman peaks in the spectral domain. Long-time, 100-ps duration observations of the transient Raman polarization are presented, and the observed transients are compared to simulated results. Fourier transformation of the transients reveals two distinct sets of beat frequencies. Simulation results for temperatures from 300-700 K are used to illustrate the temperature sensitivity of the time-domain transients and their Fourier-transform counterparts. And strategies for diagnostics are briefly discussed. These results are being utilized to develop gas-phase measurement strategies for temperature and species concentration.
In this work, we developed a self-organizing map (SOM) technique for using web-based text analysis to forecast when a group is undergoing a phase change. By 'phase change', we mean that an organization has fundamentally shifted attitudes or behaviors. For instance, when ice melts into water, the characteristics of the substance change. A formerly peaceful group may suddenly adopt violence, or a violent organization may unexpectedly agree to a ceasefire. SOM techniques were used to analyze text obtained from organization postings on the world-wide web. Results suggest it may be possible to forecast phase changes, and determine if an example of writing can be attributed to a group of interest.
Sandia National Laboratories and General Motors Global Energy Systems team conducted a joint biofuels systems analysis project from March to November 2008. The purpose of this study was to assess the feasibility, implications, limitations, and enablers of large-scale production of biofuels. 90 billion gallons of ethanol (the energy equivalent of approximately 60 billion gallons of gasoline) per year by 2030 was chosen as the book-end target to understand an aggressive deployment. Since previous studies have addressed the potential of biomass but not the supply chain rollout needed to achieve large production targets, the focus of this study was on a comprehensive systems understanding the evolution of the full supply chain and key interdependencies over time. The supply chain components examined in this study included agricultural land use changes, production of biomass feedstocks, storage and transportation of these feedstocks, construction of conversion plants, conversion of feedstocks to ethanol at these plants, transportation of ethanol and blending with gasoline, and distribution to retail outlets. To support this analysis, we developed a 'Seed to Station' system dynamics model (Biofuels Deployment Model - BDM) to explore the feasibility of meeting specified ethanol production targets. The focus of this report is water and its linkage to broad scale biofuel deployment.