Solar Thermochemical Hydrogen Production on Hexagonal Perovskites BaX0.25Mn0.75O3 (X=Ce, Nb, Pr)
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Review of Scientific Instruments
Pulsed-power generators can produce well-controlled continuous ramp compression of condensed matter for high-pressure equation-of-state studies using the magnetic loading technique. X-ray diffraction (XRD) data from dynamically compressed samples provide direct measurements of the elastic compression of the crystal lattice, onset of plastic flow, strength–strain rate dependence, structural phase transitions, and density of crystal defects, such as dislocations. Here, we present a cost-effective, compact, pulsed x-ray source for XRD measurements on pulsed-power-driven ramp-loaded samples. This combination of magnetically driven ramp compression of materials with a single, short-pulse XRD diagnostic will be a powerful capability for the dynamic materials’ community to investigate in situ dynamic phase transitions critical to equation of states. Finally, we present results using this new diagnostic to evaluate lattice compression in Zr and Al and to capture signatures of phase transitions in CdS.
International Journal of Ceramic Engineering and Science
Niobium (Nb)-doped lead-tin-zirconate-titanate (PSZT) ceramics near the lead-zirconate-titanate 95/5 orthorhombic AFE-rhombohedral FE morphotropic phase boundary (PSZT 13.5/81/5.5 -1.6Nb) were prepared with up to 10 mol.% of hafnium (Hf) substituted for zirconium. The ceramics were prepared by a traditional solid-state synthesis route and sintered to near full density at 1150°C for 6 h in sealed alumina crucibles with self-same material as the lead vapor source. All compositions were ∼98% dense with no detectable secondary phases by X-ray diffraction. The grain size was ∼3 μm for all compositions, consisting of equiaxed grains with intergranular porosity. The compositions exhibited remnant polarization values of ∼32 μC/cm2. Depolarization by the hydrostatic pressure-induced FE-AFE phase transition occurred at 310 MPa for all compositions, resulting in a total depolarization output of 32.4 μC/cm2 for the PSZT ceramics. Evaluation of the R3c-R3m and R3m-Pm (Formula presented.) m phase transition temperatures by impedance spectroscopy showed temperatures on heating ranging from 86 to 92°C and 186 to 182°C, respectively, for increasing nominal Hf content. Thermal hysteresis of the phase transitions was also observed in the ceramics, with the transition temperature on cooling being 1–4°C lower. The study demonstrated that the PSZT ceramics are relatively insensitive to variations in Hf content in the range of 0 to 10 mol.%.
Abstract not provided.
Vacuum
We report the formation of Al3Sc, in 100 nm Al0.8Sc0.2 films, is found to be driven by exposure to high temperature through higher deposition temperature or annealing. High film resistivity was observed in films with lower deposition temperature that exhibited a lack of crystallinity, which is anticipated to cause more electron scattering. An increase in deposition temperature allows for the nucleation and growth of crystalline Al3Sc regions that were verified by electron diffraction. The increase in crystallinity reduces electron scattering, which results in lower film resistivity. Annealing Al0.8Sc0.2 films at 600 °C in an Ar vacuum environment also allows for the formation and recrystallization of Al3Sc and Al and yields saturated resistivity values between 9.58 and 10.5 μΩ-cm regardless of sputter conditions. Al3Sc was found to nucleate and grow in a random orientation when deposited on SiO2, and highly {111} textured when deposited on 100 nm Ti and AlN films that were used as template layers. The rocking curve of the Al3Sc 111 reflection for the as-deposited films on Ti and AlN at 450 °C was 1.79° and 1.68°, respectively. Annealing the film deposited on the AlN template reduced the rocking curve substantially to 1.01° due to recrystallization of Al3Sc and Al within the film.
ACS Applied Materials and Interfaces
A rapid and facile design strategy to create a highly complex optical tag with programmable, multimodal photoluminescent properties is described. This was achieved via intrinsic and DNA-fluorophore hidden signatures. As a first covert feature of the tag, an intricate novel heterometallic near-infrared (NIR)-emitting mesoporous metal-organic framework (MOF) was designed and synthesized. The material is constructed from two chemically distinct, homometallic hexanuclear clusters based on Nd and Yb. Uniquely, the Nd-based cluster is observed here for the first time in a MOF and consists of two staggered Nd μ3-oxo trimers. To generate controlled, multimodal, and tailorable emission with difficult to counterfeit features, the NIR-emissive MOF was post-synthetically modified via a fluorescent DNA oligo labeling design strategy. The surface attachment of several distinct fluorophores, including the simultaneous attachment of up to three distinct fluorescently labeled oligos was achieved, with excitation and emission properties across the visible spectrum (480-800 nm). The DNA inclusion as a secondary covert element in the tag was demonstrated via the detection of SYBR Gold dye association. Importantly, the approach implemented here serves as a rapid and tailorable way to encrypt distinct information in a facile and modular fashion and provides an innovative technology in the quest toward complex optical tags.
Abstract not provided.
Abstract not provided.
ACS Applied Materials and Interfaces
Abstract not provided.
Applied Clay Science
Novel materials based on the aluminum oxyhydroxide boehmite phase were prepared using a glycothermal reaction in 1,4-butanediol. Under the synthesis conditions, the atomic structure of the boehmite phase is altered by the glycol solvent in place of the interlayer hydroxyl groups, creating glycoboehmite. The structure of glycoboehmite was examined in detail to determine that glycol molecules are intercalated in a bilayer structure, which would suggest that there is twice the expansion identified previously in the literature. This precursor phase enables synthesis of two new phases that incorporate either polyvinylpyrrolidone or hydroxylpropyl cellulose nonionic polymers. These new materials exhibit changes in morphology, thermal properties, and surface chemistry. All the intercalated phases were investigated using PXRD, HRSTEM, SEM, FT-IR, TGA/DSC, zeta potential titrations, and specific surface area measurement. These intercalation polymers are non-ionic and interact through wetting interactions and hydrogen bonding, rather than by chemisorption or chelation with the aluminum ions in the structure.
Abstract not provided.
Abstract not provided.
Frontiers in Energy Research
Solar thermochemical hydrogen (STCH) production is a promising method to generate carbon neutral fuels by splitting water utilizing metal oxide materials and concentrated solar energy. The discovery of materials with enhanced water-splitting performance is critical for STCH to play a major role in the emerging renewable energy portfolio. While perovskite materials have been the focus of many recent efforts, materials screening can be time consuming due to the myriad chemical compositions possible. This can be greatly accelerated through computationally screening materials parameters including oxygen vacancy formation energy, phase stability, and electron effective mass. In this work, the perovskite Gd0.5La0.5Co0.5Fe0.5O3 (GLCF), was computationally determined to be a potential water splitter, and its activity was experimentally demonstrated. During water splitting tests with a thermal reduction temperature of 1,350°C, hydrogen yields of 101 μmol/g and 141 μmol/g were obtained at re-oxidation temperatures of 850 and 1,000°C, respectively, with increasing production observed during subsequent cycles. This is a significant improvement from similar compounds studied before (La0.6Sr0.4Co0.2Fe0.8O3 and LaFe0.75Co0.25O3) that suffer from performance degradation with subsequent cycles. Confirmed with high temperature x-ray diffraction (HT-XRD) patterns under inert and oxidizing atmosphere, the GLCF mainly maintained its phase while some decomposition to Gd2-xLaxO3 was observed.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Alloys and Compounds
Laser beam directed energy deposition has become an increasingly popular advanced manufacturing technique for materials discovery as a result of the in situ alloying capability. In this study, we leverage an additive manufacturing enabled high throughput materials discovery approach to explore the composition space of a graded Wx(CoCrFeMnNi)100−x sample spanning 0 ≤ x ≤ 21 at%. In addition to microstructural and mechanical characterization, synchrotron high speed x-ray computer aided tomography was conducted on a W20(CoCrFeMnNi)80 composition to visualize melting dynamics, powder-laser interactions, and remelting effects of previously consolidated material. Results reveal the formation of the Fe7W6 intermetallic phase at W concentrations> 6 at%, despite the high configurational entropy. Unincorporated W particles also occurred at W concentrations> 10 at% accompanied by a dissolution band of Fe7W6 at the W/matrix interface and hardness values greater than 400 HV. The primary strengthening mechanism is attributed to the reinforcement of the Fe7W6 and W phases as a metal matrix composite. The in situ high speed x-ray imaging during remelting showed that an additional laser pass did not promote further mixing of the Fe7W6 or W phases suggesting that, despite the dissolution of the W into the Fe7W6 phase being thermodynamically favored, it is kinetically limited by the thickness/diffusivity of the intermetallic phase, and the rapid solidification of the laser-based process.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Microporous and Mesoporous Materials
Zirconium-based metal-organic frameworks, including UiO-66 and related frameworks, have become the focus of considerable research in the area of chemical warfare agent (CWA) decontamination. However, little work has been reported exploring these metal-organic frameworks (MOFs) for CWA sensing applications. For many sensing approaches, the growth of high-quality thin films of the active material is required, and thin film growth methods must be compatible with complex device architectures. Several approaches to synthesize thin films of UiO-66 have been described but many of these existing methods are complex or time consuming. We describe the development of a simple and rapid microwave assisted synthesis of oriented UiO-66 thin films on unmodified silicon (Si) and gold (Au) substrates. Thin films of UiO-66 and UiO-66-NH2 can be grown in as little as 2 min on gold substrates and 30 min on Si substrates. The film morphology and orientation are characterized and the effects of reaction time and temperature on thin film growth on Au are investigated. Both reaction time and temperature impact the overgrowth of protruding discrete crystallites in the thin film layer but, surprisingly, no strong correlation is observed between film thickness and reaction time or temperature. We also briefly describe the synthesis of Zr/Ce solid solution thin films of UiO-66 on Au and report the first synthesis of a solid solution thin film MOF. Finally, we demonstrate the utility of the microwave method for the facile functionalization of two sensor architectures, plasmonic nanohole arrays and microresonators, with UiO-66 thin films.