We describe a data-driven, multiscale technique to model reactive wetting of a silver–aluminum alloy on a Kovar™ (Fe-Ni-Co alloy) surface. We employ molecular dynamics simulations to elucidate the dependence of surface tension and wetting angle on the drop's composition and temperature. A design of computational experiments is used to efficiently generate training data of surface tension and wetting angle from a limited number of molecular dynamics simulations. The simulation results are used to parameterize models of the material's wetting properties and compute the uncertainty in the models due to limited data. The data-driven models are incorporated into an engineering-scale (continuum) model of a silver–aluminum sessile drop on a Kovar™ substrate. Model predictions of the wetting angle are compared with experiments of pure silver spreading on Kovar™ to quantify the model-form errors introduced by the limited training data versus the simplifications inherent in the molecular dynamics simulations. The paper presents innovations in the determination of “convergence” of noisy MD simulations before they are used to extract the wetting angle and surface tension, and the construction of their models which approximate physio-chemical processes that are left unresolved by the engineering-scale model. Together, these constitute a multiscale approach that integrates molecular-scale information into continuum scale models.
Fluid flow through fractured media is typically governed by the distribution of fracture apertures, which are in turn governed by stress. Consequently, understanding subsurface stress is critical for understanding and predicting subsurface fluid flow. Although laboratory-scale studies have established a sensitive relationship between effective stress and bulk electrical conductivity in crystalline rock, that relationship has not been extensively leveraged to monitor stress evolution at the field scale using electrical or electromagnetic geophysical monitoring approaches. In this paper we demonstrate the use time-lapse 3-dimensional (4D) electrical resistivity tomography to image perturbations in the stress field generated by pressurized borehole packers deployed during shear-stimulation attempts in a 1.25 km deep metamorphic crystalline rock formation.
Kim, Iltai I.; Lie, Yang; Park, Jaesung; Kim, Hyun J.; Kim, Hong C.; Yoon, Hongkyu
We show that the reflection interference fringe (RIF) is formed on a screen far away from the microdroplets placed on a prism-based substrate, which have low contact angles and thin droplet heights, caused by the dual convex-concave profile of the droplet, not a pure convex profile. The geometric formulation shows that the interference fringes are caused by the optical path difference when the reflected rays from the upper convex profile at the droplet-air interface interfere with reflection from the lower concave profile at oblique angles lower than the critical angle. Analytic solutions are obtained for the droplet height and the contact angle out of the fringe number and the fringe radius in RIF from the geometric formulation. Furthermore, the ray tracing simulation is conducted using the custom-designed code. The geometric formulation and the ray tracing show excellent agreement with the experimental observation in the relation between the droplet height and the fringe number and the relation between the contact angle and the fringe radius. This study is remarkable as the droplet's dual profile cannot be easily observed with the existing techniques. However, the RIF technique can effectively verify the existence of a dual profile of the microdroplets in a simple setup. In this work, the RIF technique is successfully developed as a new optical diagnostic technique to determine the microdroplet features, such as the dual profile, the height, the contact angle, the inflection point, and the precursor film thickness, by simply measuring the RIF patterns on the far-field screen.
GaN/InGaN microLEDs are a very promising technology for next-generation displays. Switching control transistors and their integration are key components in achieving high-performance, efficient displays. Monolithic integration of microLEDs with GaN switching devices provides an opportunity to control microLED output power with capacitive (voltage)-controlled rather than current-controlled schemes. This approach can greatly reduce system complexity for the driver circuit arrays while maintaining device opto-electronic performance. In this work, we demonstrate a 3-terminal GaN micro-light emitting transistor that combines a GaN/InGaN blue tunneling-based microLED with a GaN n-channel FET. The integrated device exhibits excellent gate control, drain current control, and optical emission control. This work provides a promising pathway for future monolithic integration of GaN FETs with microLED to enable fast switching, high-efficiency microLED display and communication systems.
Electrical polarization and defect transport are examined in 0.8BaTiO3–0.2BiZn0.5Ti0.5O3, an attractive capacitor material for high power electronics. Oxygen vacancies are suggested to be the majority charge carrier at or below 250°C with a grain conduction hopping activation energy of 0.97 eV and 0.92 eV for thermally stimulated depolarization current (TSDC) and impedance spectroscopy measurements, respectively. At higher temperature, thermally generated electronic conduction with an activation energy of 1.6 eV is dominant. Significant oxygen vacancy concentration is indicated (up to ~1%) due to cation vacancy formation (i.e., acceptor defects) from observed Bi (and likely Zn) volatility. Oxygen vacancy diffusivity is estimated to be 10-12.8 cm2/s at 250°C. Low diffusivity and high activation energies are indicative of significant defect interactions. Dipolar oxygen vacancy defects are also indicated, with an activation energy of 0.59 eV from TSDC measurements. In conclusion, the large oxygen vacancy content leads to a short lifetime during high voltage (30 kV/cm), high temperature (250°C) direct current (DC) electrical measurements.
A new strategy is presented for computing anharmonic partition functions for the motion of adsorbates relative to a catalytic surface. Importance sampling is compared with conventional Monte Carlo. The importance sampling is significantly more efficient. This new approach is applied to CH3* on Ni(111) as a test case. The motion of methyl relative to the nickel surface is found to be anharmonic, with significantly higher entropy compared to the standard harmonic oscillator model. The new method is freely available as part of the Minima-Preserving Neural Network within the AdTherm package.
Nanoporous, gas-selective membranes have shown encouraging results for the removal of CO2 from flue gas, yet the optimal design for such membranes is often unknown. Therefore, we used molecular dynamics simulations to elucidate the behavior of CO2 within aqueous and ionic liquid (IL) systems ([EMIM][TFSI] and [OMIM][TFSI]), both confined individually and as an interfacial aqueous/IL system. We found that within aqueous systems the mobility of CO2 is reduced due to interactions between the CO2 oxygens and hydroxyl groups on the pore surface. Within the IL systems, we found that confinement has a greater effect on the [EMIM][TFSI] system as opposed to the [OMIM][TFSI] system. Paradoxically, the larger and more asymmetrical [OMIM]+ molecule undergoes less efficient packing, resulting in fewer confinement effects. Free energy surfaces of the nanoconfined aqueous/IL interface demonstrate that CO2 will transfer spontaneously from the aqueous to the IL phase.
The Example Problems Manual supplements the User's Manual and the Theory Manual. The goal of the Example Problems Manual is to reduce learning time for complex end to end analyses. These documents are intended to be used together. See the User's Manual for a complete list of the options for a solution case. All the examples are part of the salinas test suite. Each runs as is.
NasGen provides a path for migration of structural models from Nastran bulk data format (BDF) into both an Exodus mesh file and an ASCII input file for Sierra Structural Dynamics (Salinas) and Solid Mechanics (Adagio). Many tools at Sandia National Labs (SNL) use the Exodus format. This document describes capabilities and limitations of the NasGen translation software.
Lasa, Ane; Park, Jae-Sun; Lore, Jeremy; Blondel, Sophie; Bernholdt, David E.; Canik, John M.; Cianciosa, Mark; Coburn, Jonathan D.; Curreli, Davide; Elwasif, Wael; Guterl, Jerome; Hoffman, Josh; Park, Jim M.; Sinclair, Gregory; Wirth, Brian D.
Integrated modeling of plasma-surface interactions provides a comprehensive and self-consistent description of the system, moving the field closer to developing predictive and design capabilities for plasma facing components. One such workflow, including descriptions for the scrape-off-layer plasma, ion-surface interactions and the sub-surface evolution, was previously used to address steady-state scenarios and has recently been extended to incorporate time-dependence and two-way information flow. The new model can address dynamic recycling in transient scenarios, such as the application presented in this paper: the evolution of W samples pre-damaged by helium and exposed to ELMy H-mode plasmas in the DIII-D DiMES. A first set of simulations explored the effect of ELM frequency. This study was discussed in detail in this conference's proceedings and is summarized here. The 2nd set of simulations, which is the focus of this paper, explores the effect of code-coupling frequency. These simulations include initial SOLPS solutions converged to the inter-ELM state, ion impact energy (Ein) and angles (Ain) calculated by hPIC2, and an improved heat transfer description in Xolotl. The model predicts increases in particle fluxes and decreases in heat fluxes by 10%–20% with the coupling time-step. Compared with the first set of simulations, the less shallow impact angle leads to smaller reflection rates and significant D implantation. The higher fraction of implanted flux (and deeper), in particular during ELMs, increases the accumulated D content in the W near-surface region. Future expansion of the workflow includes coupling to hPIC2 and GITR to ensure accurate descriptions of Ein and Ain, and W impurity transport.
Experiments offer incredible value to science, but results must always come with an uncertainty quantification to be meaningful. This requires grappling with sources of uncertainty and how to reduce them. In wind energy, field experiments are sometimes conducted with a control and treatment. In this scenario uncertainty due to bias errors can often be neglected as they impact both control and treatment approximately equally. However, uncertainty due to random errors propagates such that the uncertainty in the difference between the control and treatment is always larger than the random uncertainty in the individual measurements if the sources are uncorrelated. As random uncertainties are usually reduced with additional measurements, there is a need to know the minimum duration of an experiment required to reach acceptable levels of uncertainty. We present a general method to simulate a proposed experiment, calculate uncertainties, and determine both the measurement duration and the experiment duration required to produce statistically significant and converged results. The method is then demonstrated as a case study with a virtual experiment that uses real-world wind resource data and several simulated tip extensions to parameterize results by the expected difference in power. With the method demonstrated herein, experiments can be better planned by accounting for specific details such as controller switching schedules, wind statistics, and postprocess binning procedures such that their impacts on uncertainty can be predicted and the measurement duration needed to achieve statistically significant and converged results can be determined before the experiment.
Multivalent-ion battery technologies are increasingly attractive options for meeting diverse energy storage needs. Calcium ion batteries (CIB) are particularly appealing candidates for their earthly abundance, high theoretical volumetric energy density, and relative safety advantages. At present, only a few Ca-ion electrolyte systems are reported to reversibly plate at room temperature: for example, aluminates and borates, including Ca[TPFA]2, where [TPFA]− = [Al(OC(CF3)3)4]− and Ca[B(hfip)4]2, [B(hfip)4]2- = [B(OCH(CF3)2)4]−. Analyzing the structure of these salts reveals a common theme: the prevalent use of a weakly coordinating anion (WCA) consisting of a tetracoordinate aluminum/boron (Al/B) center with fluorinated alkoxides. Leveraging the concept of theory-aided design, we report an innovative, one-pot synthesis of two new calcium-ion electrolyte salts (Ca[Al(tftb)4]2, Ca[Al(hftb)4]2) and two reported salts (Ca[Al(hfip)4]2 and Ca[TPFA]2) where hfip = (−OCH(CF3)2), tftb = (−OC(CF3)(Me)2), hftb = (−OC(CF3)2(Me)), [TPFA]− = [Al(OC(CF3)3)4]−. We also reveal the dependence of Coulombic efficiency on their inherent propensity for cation-anion coordination.
Stress corrosion cracking behavior of stainless steel 304 L was investigated in full immersion, evaporated artificial sea salt brines (ASW) at 55 °C. It was observed that brines representative of thermodynamically stable brines at lower relative humidity (40% RH, MgCl2-dominant) had a faster crack growth rate than high relative humidity brines (76% RH, NaCl-dominant). Observed crack growth rates (da/dt) under constant stress intensity (K) conditions were determined to be independent of transitioning procedure (rising K or decreasing frequency) regardless of solutions investigated for the orientation presented. Further, positive strain rates had little to no impact on the observed da/dt. The observed behavior suggests an anodic dissolution enhanced hydrogen embrittlement mechanism for SS304L in concentrated ASW environments at 55 °C. Additional explorations further examined environmental influences on da/dt. Nitrate additions to 40% ASW at 55 °C solutions were shown to decrease measured da/dt and further additions stopped measurable crack growth. After sufficient nitrate had been added to fully stifle crack growth, a temperature increase to 75 °C induced cracking again, and a subsequent decrease to 55 °C once again stopped da/dt. These tests demonstrate the importance of ascertaining both brine-specific chemical and dynamic environmental influences on da/dt.
Multivalent battery chemistries have been explored in response to the increasing demand for high-energy rechargeable batteries utilizing sustainable resources. Solvation structures of working cations have been recognized as a key component in the design of electrolytes; however, most structure−property correlations of metal ions in organic electrolytes usually build upon favorable static solvation structures, often overlooking solvent exchange dynamics. We here report the ion solvation structures and solvent exchange rates of magnesium electrolytes in various solvents by using multimodal nuclear magnetic resonance (NMR) analysis and molecular dynamics/density functional theory (MD/DFT) calculations. These magnesium solvation structures and solvent exchange dynamics are correlated to the combined effects of several physicochemical properties of the solvents. Moreover, Mg2+ transport and interfacial charge transfer efficiency are found to be closely correlated to the solvent exchange rate in the binary electrolytes where the solvent exchange is tunable by the fraction of diluent solvents. Our primary findings are (1) most battery-related solvents undergo ultraslow solvent exchange coordinating to Mg2+ (with time scales ranging from 0.5 μs to 5 ms), (2) the cation transport mechanism is a mixture of vehicular and structural diffusion even at the ultraslow exchange limit (with faster solvent exchange leading to faster cation transport), and (3) an interfacial model wherein organic-rich regions facilitate desolvation and inorganic regions promote Mg2+ transport is consistent with our NMR, electrochemistry, and cryogenic X-ray photoelectron spectroscopy (cryo-XPS) results. This observed ultraslow solvent exchange and its importance for ion transport and interfacial properties necessitate the judicious selection of solvents and informed design of electrolyte blends for multivalent electrolytes.
Neural operators, which can act as implicit solution operators of hidden governing equations, have recently become popular tools for learning the responses of complex real-world physical systems. Nevertheless, most neural operator applications have thus far been data-driven and neglect the intrinsic preservation of fundamental physical laws in data. In this work, we introduce a novel integral neural operator architecture called the Peridynamic Neural Operator (PNO) that learns a nonlocal constitutive law from data. This neural operator provides a forward model in the form of state-based peridynamics, with objectivity and momentum balance laws automatically guaranteed. As applications, we demonstrate the expressivity and efficacy of our model in learning complex material behaviors from both synthetic and experimental data sets. We also compare the performances with baseline models that use predefined constitutive laws. We show that, owing to its ability to capture complex responses, our learned neural operator achieves improved accuracy and efficiency. Moreover, by preserving the essential physical laws within the neural network architecture, the PNO is robust in treating noisy data. The method shows generalizability to different domain configurations, external loadings, and discretizations.
We show that the deposition of the solid-state electrolyte LiPON onto films of V2O5 leads to their uniform lithiation of up to 2.2 Li per V2O5, without affecting the Li concentration in the LiPON and its ionic conductivity. Our results indicate that Li incorporation occurs during LiPON deposition, in contrast to earlier mechanisms proposed to explain postdeposition Li transfer between LiPON and LiCoO2. We use our discovery to demonstrate symmetric thin film batteries with a capacity of >270 mAh/g, at a rate of 20C, and 1600 cycles with only 8.4% loss in capacity. We also show how autolithiation can simplify fabrication of Li iontronic transistors attractive for emerging neuromorphic computing applications. Our discovery that LiPON deposition results in autolithiation of the underlying insertion oxide has the potential to substantially simplify and enhance the fabrication process for thin film solid state Li ion batteries and emerging lithium iontronic neuromorphic computing devices.
Adams, David P.; Mcclure, Zachary D.; Appleton, Robert J.; Strachan, Alejandro
Ge-Sb-Te (GST) alloys are leading phase-change materials for data storage due to the fast phase transition between amorphous and crystalline states. Ongoing research aims at improving the stability of the amorphous phase to improve retention. This can be accomplished by the introduction of carbon as a dopant to Ge2Sb2Te5, which is known to alter the short- and mid-range structure of the amorphous phase and form covalently bonded C clusters, both of which hinder crystallization. The relative importance of these processes as a function of C concentration is not known. We used molecular dynamics simulation based on density functional theory to study how carbon doping affects the atomic structure of GST-C. Carbon doping results in an increase in tetrahedral coordination, especially of Ge atoms, and this is known to stabilize the amorphous phase. We observe an unexpected, non-monotonous trend in the number of tetrahedral bonded Ge with the amount of carbon doping. Our simulations show an increase in the number of tetrahedral bonded Ge up to 5 at.% C, after which the number saturates and begins to decrease above 14 at.% C. The carbon atoms aggregate into clusters, mostly in the form of chains and graphene flakes, leaving less carbon to disrupt the GST matrix at higher carbon concentrations. Different degrees of carbon clustering can explain divergent experimental results for recrystallization temperature for carbon doped GST.
High-nickel-content layered oxides are among the most promising electric vehicle battery cathode materials. However, their interfacial reactivity with electrolytes and tendency toward oxygen release (possibly yielding reactive 1O2) remain degradation concerns. Elucidating the most relevant (i.e., fastest) interfacial degradation mechanism will facilitate future mitigation strategies. We apply screened hybrid density functional (HSE06) calculations to compare the reaction kinetics of LixNiO2 surfaces with ethylene carbonate (EC) with those of O2 release. On both the (001) and (104) facets, EC oxidative decomposition exhibits lower activation energies than O2 release. Our calculations, coupled with previously computed liquid-phase reaction rates of 1O2 with EC, strongly question the role of “reactive 1O2” species in electrolyte oxidative degradation. The possible role of other oxygen species is discussed. To deal with the challenges of modeling LixNiO2 surface reactivity, we emphasize a “local structure” approach instead of pursuing the global energy minimum.
Asymmetric scattering is a phenomenon in which the field scattered from a discontinuity is dependent on the direction of incidence. In waveguide systems such as elastic plates, the existence of multiple propagating modes provides a platform to explore asymmetric scattering through direction-dependent mode coupling. This paper describes this concept in the context of reciprocal systems and how to utilize it in a general manner.
Efficient carbon capture requires the design of new materials with high CO2 selectivity and gas adsorption capacity that can be incorporated into existing industrial processes. Porous liquids (PLs) are promising candidate materials that consist of a nanoporous host and a solvent forming a liquid with permanent porosity based on exclusion of the solvent from the interior of the nanoporous host. Stable PLs are based on solvent-nanoporous host interactions, which can be evaluated through molecular simulations. Here, time- and temperature-dependent density functional theory simulations were performed between four solvents, 2-bromophenol, 4-methylphenol, 2,4-dimethylphenol, and cyclohexanone and the CC13 porous organic cage (POC) as a prototypical PL composition. Overall, minimal reactions occurred in the PL including no changes in the POC structure. Additionally, POC-solvent coordination occurred through interactions of neighboring functional groups such as methyl/bromide and hydroxyl on the solvent molecules with the POC surface. Therefore, the location rather than the number of functional groups on the solvent molecule controls the POC-solvent interactions. Additionally, the POC pore window contracted or expanded up to 8% during solvation, which correlates with the experimental solubility and static solvent-POC binding, where solvents that caused less contraction of the POC pore window increased POC solubility. These results allow for the design of optimized POC-based PL compositions based on solvent-nanoporous host binding and variation in the pore window during solvation.