We present a novel design of a III-V-on-silicon heterogeneously integrated tunable ring laser, achieving >80 nanometers of tuning bandwidth, the widest conceived using only two rings, fostering many applications such as spectroscopy and beam steering.
We report on a two-step technique for post-bond III-V substrate removal involving precision mechanical milling and selective chemical etching. We show results on GaAs, GaSb, InP, and InAs substrates and from mm-scale chips to wafers.
We report on a two-step technique for post-bond III-V substrate removal involving precision mechanical milling and selective chemical etching. We show results on GaAs, GaSb, InP, and InAs substrates and from mm-scale chips to wafers.
Low loss silicon nitride ring resonator reflectors provide feedback to a III/V gain chip, achieving single-mode lasing at 772nm. The Si3N4 is fabricated in a CMOS foundry compatible process that achieves loss values of 0.036dB/cm.