Publications

Results 68001–68200 of 96,771

Search results

Jump to search filters

Laser wafering for silicon solar

Sweatt, W.C.; Jared, Bradley H.

Current technology cuts solar Si wafers by a wire saw process, resulting in 50% 'kerf' loss when machining silicon from a boule or brick into a wafer. We want to develop a kerf-free laser wafering technology that promises to eliminate such wasteful wire saw processes and achieve up to a ten-fold decrease in the g/W{sub p} (grams/peak watt) polysilicon usage from the starting polysilicon material. Compared to today's technology, this will also reduce costs ({approx}20%), embodied energy, and green-house gas GHG emissions ({approx}50%). We will use short pulse laser illumination sharply focused by a solid immersion lens to produce subsurface damage in silicon such that wafers can be mechanically cleaved from a boule or brick. For this concept to succeed, we will need to develop optics, lasers, cleaving, and high throughput processing technologies capable of producing wafers with thicknesses < 50 {micro}m with high throughput (< 10 sec./wafer). Wafer thickness scaling is the 'Moore's Law' of silicon solar. Our concept will allow solar manufacturers to skip entire generations of scaling and achieve grid parity with commercial electricity rates. Yet, this idea is largely untested and a simple demonstration is needed to provide credibility for a larger scale research and development program. The purpose of this project is to lay the groundwork to demonstrate the feasibility of laser wafering. First, to design and procure on optic train suitable for producing subsurface damage in silicon with the required damage and stress profile to promote lateral cleavage of silicon. Second, to use an existing laser to produce subsurface damage in silicon, and third, to characterize the damage using scanning electron microscopy and confocal Raman spectroscopy mapping.

More Details

Sandia National Laboratories, California Environmental Monitoring Program annual report for 2011

Holland, Robert C.

The annual program report provides detailed information about all aspects of the SNL/California Environmental Monitoring Program. It functions as supporting documentation to the SNL/California Environmental Management System Program Manual. The 2010 program report describes the activities undertaken during the previous year, and activities planned in future years to implement the Environmental Monitoring Program, one of six programs that supports environmental management at SNL/California.

More Details

A theory manual for multi-physics code coupling in LIME

Bartlett, Roscoe B.; Belcourt, Kenneth N.; Hooper, Russell H.; Schmidt, Rodney C.

The Lightweight Integrating Multi-physics Environment (LIME) is a software package for creating multi-physics simulation codes. Its primary application space is when computer codes are currently available to solve different parts of a multi-physics problem and now need to be coupled with other such codes. In this report we define a common domain language for discussing multi-physics coupling and describe the basic theory associated with multiphysics coupling algorithms that are to be supported in LIME. We provide an assessment of coupling techniques for both steady-state and time dependent coupled systems. Example couplings are also demonstrated.

More Details

Harsh environments electronics : downhole applications

Vianco, Paul T.

The development and operational sustainment of renewable (geothermal) and non-renewable (fossil fuel) energy resources will be accompanied by increasingly higher costs factors: exploration and site preparation, operational maintenance and repair. Increased government oversight in the wake of the Gulf oil spill will only add to the cost burden. It is important to understand that downhole conditions are not just about elevated temperatures. It is often construed that military electronics are exposed to the upper limit in terms of extreme service environments. Probably the harshest of all service conditions for electronics and electrical equipment are those in oil, gas, and geothermal wells. From the technology perspective, advanced materials, sensors, and microelectronics devices are benefificial to the exploration and sustainment of energy resources, especially in terms of lower costs. Besides the need for the science that creates these breakthroughs - there is also a need for sustained engineering development and testing. Downhole oil, gas, and geothermal well applications can have a wide range of environments and reliability requirements: Temperature, Pressure, Vibration, Corrosion, and Service duration. All too frequently, these conditions are not well-defifined because the application is labeled as 'high temperature'. This ambiguity is problematic when the investigation turns to new approaches for electronic packaging solutions. The objective is to develop harsh environment, electronic packaging that meets customer requirements of cost, performance, and reliability. There are a number of challenges: (1) Materials sets - solder alloys, substrate materials; (2) Manufacturing process - low to middle volumes, low defect counts, new equipment technologies; and (3) Reliability testing - requirements documents, test methods and modeling, relevant standards documents. The cost to develop and sustain renewable and non-renewable energy resources will continue to escalate within the industry. Downhole electronics can provide a very cost-effective approach for well exploration and sustainment (data logging). However, the harsh environments are a 'game-changer' in terms defining materials, assembly processes and the long-term reliability of downhole electronic systems. The system-level approach will enable the integration of each of these contributors - materials, processes, and reliability - in order to deliver cost-effective electronics that meet customer requirements.

More Details

Software enhancements to the IVSEM model of the CTBTO IMS

Damico, Joseph D.

Sandia National Laboratories (SNL) developed the Integrated Verification System Evaluation Model (IVSEM) to estimate the performance of the International Monitoring System (IMS) operated by the Comprehensive Nuclear Test Ban Treaty Organization (CTBTO). IVSEM was developed in several phases between 1995 and 2000. The model was developed in FORTRAN with an IDL-based user interface and was compiled for Windows and UNIX operating systems. Continuing interest in this analysis capability, coupled with numerous advances in desktop computer hardware and software since IVSEM was written, enabled significant improvements to IVSEM run-time performance and data analysis capabilities. These improvements were implemented externally without modifying the FORTRAN executables, which had been previously verified. This paper describes the parallelization approach developed to significantly reduce IVSEM run-times and the new test setup and analysis tools developed to facilitate better IVSEM operation.

More Details

Channeling light into quantum-scale gaps

Physical Review B - Condensed Matter and Materials Physics

Kekatpure, Rohan D.; Davids, Paul D.

We develop a discrete plasmonic mode-matching technique to investigate the ultimate limits to plasmonic light concentration down to the length scales required for observation of quantum-mechanical phenomena, including plasmon-assisted electron tunneling. Our mode-matching calculations, verified by direct numerical solution of Maxwell's equations, indicate achievable coupling efficiencies of >20% into symmetric bound gap plasmon modes in sub-10-nm gaps. For a given operating wavelength and a choice of material parameters, we demonstrate the existence of a specific width that maximizes enhancement of the electromagnetic field coupled into the gap. More generally, our calculations establish an intuitive and a computationally efficient framework for determining coupling efficiencies in and out of quantum-scale waveguides. © 2011 American Physical Society.

More Details

Targeting proteins to liquid-ordered domains in lipid membranes

Langmuir

Stachowiak, Jeanne C.; Hayden, Carl C.; Sanchez, Mari A.; Wang, Julia W.; Bunker, B.C.; Voigt, James A.; Sasaki, Darryl Y.

We demonstrate the construction of novel protein-lipid assemblies through the design of a lipid-like molecule, DPIDA, endowed with tail-driven affinity for specific lipid membrane phases and head-driven affinity for specific proteins. In studies performed on giant unilamellar vesicles (GUVs) with varying mole fractions of dipalymitoylphosphatidylcholine (DPPC), cholesterol, and diphytanoylphosphatidyl choline (DPhPC), DPIDA selectively partitioned into the more ordered phases, either solid or liquid-ordered (Lo) depending on membrane composition. Fluorescence imaging established the phase behavior of the resulting quaternary lipid system. Fluorescence correlation spectroscopy confirmed the fluidity of the Lo phase containing DPIDA. In the presence of CuCl2, the iminodiacetic acid (IDA) headgroup of DPIDA forms the Cu(II)-IDA complex that exhibits a high affinity for histidine residues. His-tagged proteins were bound specifically to domains enriched in DPIDA, demonstrating the capacity to target protein binding selectively to both solid and Lo phases. Steric pressure from the crowding of surface-bound proteins transformed the domains into tubules with persistence lengths that depended on the phase state of the lipid domains. © 2010 American Chemical Society.

More Details

Advanced optical imaging reveals the dependence of particle geometry on interactions between CdSe quantum dots and immune cells

Small

Aaron, Jesse S.; Greene, Adrienne C.; Kotula, Paul G.; Bachand, George B.; Timlin, Jerilyn A.

The biocompatibility and possible toxicological consequences of engineered nanomaterials, including quantum dots (QDs) due to their unique suitability for biomedical applications, remain intense areas of interest. We utilized advanced imaging approaches to characterize the interactions of CdSe QDs of various sizes and shapes with live immune cells. Particle diffusion and partitioning within the plasma membrane, cellular uptake kinetics, and sorting of particles into lysosomes were all independantly characterized. Using high-speed total internal reflectance fluorescence (TIRF) microscopy, we show that QDs with an average aspect ratio of 2.0 (i.e., rod-shaped) diffuse nearly an order of magnitude slower in the plasma membrane than more spherical particles with aspect ratios of 1.2 and 1.6, respectively. Moreover, more rod-shaped QDs were shown to be internalized into the cell 2-3 fold more slowly. Hyperspectral confocal fluorescence microscopy demonstrates that QDs tend to partition within the cell membrane into regions containing a single particle type. Furthermore, data examining QD sorting mechanisms indicate that endocytosis and lysosomal sorting increases with particle size. Together, these observations suggest that both size and aspect ratio of a nanoparticle are important characteristics that significantly impact interactions with the plasma membrane, uptake into the cell, and localization within intracellular vesicles. Thus, rather than simply characterizing nanoparticle uptake into cells, we show that utilization of advanced imaging approaches permits a more nuanced and complete examination of the multiple aspects of cell-nanoparticle interactions that can ultimately aid understanding possible mechanisms of toxicity, resulting in safer nanomaterial designs. Using hyperspectral confocal fluorescence (HCF) microscopy, it is shown that quantum dots of various sizes and shapes partition themselves into distinct regions within the cell membrane of RBL-2H3 rat mast cells. HCF microscopy allows for deconvolving the signal from multiple, overlapping fluorophores in the sample in order to reveal precise concentrations and distributions of nanoparticles in the cell. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

More Details

Soot volume fraction and morphology of conventional and surrogate jet fuel sprays at 1000-K and 6.7-MPa ambient conditions

Proceedings of the Combustion Institute

Kook, Sanghoon; Pickett, Lyle M.

This paper presents soot processes of a blend of 23% m-xylene and 77% n-dodecane, which has been selected by several working groups as a surrogate for jet fuel. Fuel sprays were injected into high-temperature, high-pressure ambient conditions that are representative of practical engine combustion. Simultaneous laser extinction (KL) measurement and planar laser-induced incandescence imaging were performed to derive the in situ soot volume fraction. Also, soot particles were extracted from different positions within the reacting jet by means of a thermophoretic probe, and analyzed using transmission electron microscopy (TEM) to clarify the soot structure and its correlation with the measured soot volume fraction. The same measurements were repeated for the conventional jet fuel to understand the overall performance of the selected surrogate fuel. The soot volume fraction results show that, at fixed ambient conditions, the surrogate fuel produces more soot than the conventional jet fuel. The TEM images show that the soot aggregates are more agglomerated, which may not be easily eliminated by in-cylinder oxidation. The total number of primary particles and the mean primary particle size are higher for the surrogate fuel, consistent with the soot volume fraction trend. Considering that there is similar lift-off length between fuels, the differences in soot level and morphology are caused by molecular structure effects, such as a higher aromatic content. The quantitative soot database obtained from the present study offers data for the validation of soot kinetic models, particularly at high temperature and pressure conditions where little fundamental data exist. © 2010 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

More Details

Time harmonic two-dimensional cavity scar statistics: Convex mirrors and bowtie

Electromagnetics

Warne, Larry K.; Jorgenson, Roy E.; Kotulski, J.D.; Lee, K.S.H.

This article examines the localization of time harmonic high-frequency modal fields in two-dimensional cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This article examines the enhancements for these unstable orbits when the opposing mirrors are convex, constructing the high-frequency field in the scar region using elliptic cylinder coordinates in combination with a random reflection phase from the outer chaotic region. The enhancements when the cavity is symmetric as well as asymmetric about the orbit are examined. © Taylor & Francis Group, LLC.

More Details

Permittivity scaling in Ba1-xSrxTiO3 thin films and ceramics

Journal of Applied Physics

Aygün, Seymen M.; Ihlefeld, Jon F.; Borland, William J.; Maria, Jon P.

A dramatic enhancement in the electromechanical response of barium titanate thin films is demonstrated by understanding and optimizing the relationship between organic removal, crystallization, and microstructure, which therefore results in pore elimination, larger grain sizes, and superior densification. The combination enables one to produce bulk-like dielectric properties in a thin film with a room temperature permittivity value above 3000. This advancement in complex oxide thin film processing science creates a new perspective from which to compare, parameterize, and better understand a collection of literature data concerning the manner in which the dielectric response of BaTiO3 depends upon physical dimensions. We are consequently able to apply a single physical model to bulk ceramic and thin film systems, and so demonstrate that the existence of parasitic interfacial layers are not needed to explain dielectric scaling. This work is instrumental in illustrating that extrinsic contributions to scaling are predominant, and that a fundamental understanding of material synthesis provides important opportunities to broaden the spectrum of nonlinear electromechanical properties that can be achieved in ferroelectric thin films. © 2011 American Institute of Physics.

More Details

Laser-induced incandescence measurements of soot in turbulent pool fires

Applied Optics

Frederickson, Kraig; Kearney, Sean P.; Grasser, Thomas W.

We present what we believe to be the first application of the laser-induced incandescence (LII) technique to large-scale fire testing. The construction of an LII instrument for fire measurements is presented in detail. Soot volume fraction imaging from 2m diameter pool fires burning blended toluene/methanol liquid fuels is demonstrated along with a detailed report of measurement uncertainty in the challenging pool fire environment. Our LII instrument relies upon remotely located laser, optical, and detection systems and the insertion of water-cooled, fiber-bundle-coupled collection optics into the fire plume. Calibration of the instrument was performed using an ethylene/air laminar diffusion flame produced by a Santoro-type burner, which allowed for the extraction of absolute soot volume fractions from the LII images. Single-laser-shot two-dimensional images of the soot layer structure are presented with very high volumetric spatial resolution of the order of 10 -5 cm3. Probability density functions of the soot volume fraction fluctuations are constructed from the large LII image ensembles. The results illustrate a highly intermittent soot fluctuation field with potentially large macroscale soot structures and clipped soot probability densities. © 2010 Optical Society of America.

More Details

Physics of intense, high energy radiation effects

Hjalmarson, Harold P.; Magyar, Rudolph J.; Crozier, Paul C.; Hartman, Elmer F.

This document summarizes the work done in our three-year LDRD project titled 'Physics of Intense, High Energy Radiation Effects.' This LDRD is focused on electrical effects of ionizing radiation at high dose-rates. One major thrust throughout the project has been the radiation-induced conductivity (RIC) produced by the ionizing radiation. Another important consideration has been the electrical effect of dose-enhanced radiation. This transient effect can produce an electromagnetic pulse (EMP). The unifying theme of the project has been the dielectric function. This quantity contains much of the physics covered in this project. For example, the work on transient electrical effects in radiation-induced conductivity (RIC) has been a key focus for the work on the EMP effects. This physics in contained in the dielectric function, which can also be expressed as a conductivity. The transient defects created during a radiation event are also contained, in principle. The energy loss lead the hot electrons and holes is given by the stopping power of ionizing radiation. This information is given by the inverse dielectric function. Finally, the short time atomistic phenomena caused by ionizing radiation can also be considered to be contained within the dielectric function. During the LDRD, meetings about the work were held every week. These discussions involved theorists, experimentalists and engineers. These discussions branched out into the work done in other projects. For example, the work on EMP effects had influence on another project focused on such phenomena in gases. Furthermore, the physics of radiation detectors and radiation dosimeters was often discussed, and these discussions had impact on related projects. Some LDRD-related documents are now stored on a sharepoint site (https://sharepoint.sandia.gov/sites/LDRD-REMS/default.aspx). In the remainder of this document the work is described in catergories but there is much overlap between the atomistic calculations, the continuum calculations and the experiments.

More Details

Migrating data from TcSE to DOORS : an evaluation of the T-Plan Integrator software application

Taylor, Jeffrey L.; Post, Debra S.

This report describes our evaluation of the T-Plan Integrator software application as it was used to transfer a real data set from the Teamcenter for Systems Engineering (TcSE) software application to the DOORS software application. The T-Plan Integrator was evaluated to determine if it would meet the needs of Sandia National Laboratories to migrate our existing data sets from TcSE to DOORS. This report presents the struggles of migrating data and focuses on how the Integrator can be used to map a data set and its data architecture from TcSE to DOORS. Finally, this report describes how the bulk of the migration can take place using the Integrator; however, about 20-30% of the data would need to be transferred from TcSE to DOORS manually. This report does not evaluate the transfer of data from DOORS to TcSE.

More Details

Velocimetry signal synthesis with fringen

Dolan, Daniel H.

An important part of velocimetry analysis is the recovery of a known velocity history from simulated data signals. The fringen program synthesizes VISAR and PDV signals, given a specified velocity history, using exact formulations for the optical signal. Time-dependent light conditions, non-ideal measurement conditions, and various diagnostic limitations (noise, etc.) may be incorporated into the simulated signals. This report describes the fringen program, which performs forward VISAR (Velocity Interferometer System for Any Reflector) and PDV (Photonic Doppler Velocimetry, also known as heterodyne velocimetry) analysis. Nearly all effects that might occur in VISAR/PDV measurement of a single velocity can be modeled by fringen. The program operates in MATLAB, either within a graphical interface or as a user-callable function. The current stable version of fringen is 0.3, which was released in October 2010. The following sections describe the operation and use of fringen. Section 2 gives a brief overview of VISAR and PDV synthesis. Section 3 illustrates the graphical and console interface of fringen. Section 4 presents several example uses of the program. Section 5 summarizes program capabilities and discusses potential future work.

More Details

Advances in process intensification through multifunctional reactor engineering

Gill, Walt; O'Hern, Timothy J.; Cooper, Marcia A.; Miller, James E.

A multifunctional reactor is a chemical engineering device that exploits enhanced heat and mass transfer to promote production of a desired chemical, combining more than one unit operation in a single system. The main component of the reactor system under study here is a vertical column containing packing material through which liquid(s) and gas flow cocurrently downward. Under certain conditions, a range of hydrodynamic regimes can be achieved within the column that can either enhance or inhibit a desired chemical reaction. To study such reactors in a controlled laboratory environment, two experimental facilities were constructed at Sandia National Laboratories. One experiment, referred to as the Two-Phase Experiment, operates with two phases (air and water). The second experiment, referred to as the Three-Phase Experiment, operates with three phases (immiscible organic liquid and aqueous liquid, and nitrogen). This report describes the motivation, design, construction, operational hazards, and operation of the both of these experiments. Data and conclusions are included.

More Details

Fundamentals of embossing nanoimprint lithography in polymer substrates

Simmons, Blake S.

The convergence of micro-/nano-electromechanical systems (MEMS/NEMS) and biomedical industries is creating a need for innovation and discovery around materials, particularly in miniaturized systems that use polymers as the primary substrate. Polymers are ubiquitous in the microelectronics industry and are used as sensing materials, lithography tools, replication molds, microfluidics, nanofluidics, and biomedical devices. This diverse set of operational requirements dictates that the materials employed must possess different properties in order to reduce the cost of production, decrease the scale of devices to the appropriate degree, and generate engineered devices with new functional properties at cost-competitive levels of production. Nanoscale control of polymer deformation at a massive scale would enable breakthroughs in all of the aforementioned applications, but is currently beyond the current capabilities of mass manufacturing. This project was focused on developing a fundamental understanding of how polymers behave under different loads and environments at the nanoscale in terms of performance and fidelity in order to fill the most critical gaps in our current knowledgebase on this topic.

More Details
Results 68001–68200 of 96,771
Results 68001–68200 of 96,771