Publications

Results 201–225 of 2,290

Search results

Jump to search filters

Q: A Sound Verification Framework for Statecharts and Their Implementations

FTSCS 2022 - Proceedings of the 8th ACM SIGPLAN International Workshop on Formal Techniques for Safety-Critical Systems, co-located with SPLASH 2022

Pollard, Samuel D.; Armstrong, Robert C.; Bender, John M.; Hulette, Geoffrey C.; Mahmood, Raheel; Laros, James H.; Rawlings, Blake R.; Aytac, Jon M.

We present Q Framework: a verification framework used at Sandia National Laboratories. Q is a collection of tools used to verify safety and correctness properties of high-consequence embedded systems and captures the structure and compositionality of system specifications written with state machines in order to prove system-level properties about their implementations. Q consists of two main workflows: 1) compilation of temporal properties and state machine models (such as those made with Stateflow) into SMV models and 2) generation of ACSL specifications for the C code implementation of the state machine models. These together prove a refinement relation between the state machine model and its C code implementation, with proofs of properties checked by NuSMV (for SMV models) and Frama-C (for ACSL specifications).

More Details

Metal Hydride Compressor for High-Pressure (875 bar) Hydrogen Delivery

Johnson, Terry A.; Laros, James H.; Bowman, Robert C.; Smith, D.B.; Anovitz, Lawrence M.; Jensen, Craig M.

Metal hydride hydrogen compression utilizes a reversible heat-driven interaction of a hydride-forming metal alloy with hydrogen gas. This paper reports on the development of a laboratory scale two-stage Metal Hydride Compressor (MHC) system with a feed pressure of 150 bar delivering high purity H2 gas at outlet pressures up to 875 bar. Stage 1 and stage 2 AB2 metal hydrides are identified based on experimental characterization of the pressure-composition-temperature (PCT) behavior of candidate materials. The selected metal hydrides are each combined with expanded natural graphite, increasing the thermal conductivity of the composites by an order of magnitude. These composites are integrated in two compressor beds with internal heat exchangers that alternate between hydrogenation and dehydrogenation cycles by thermally cycling between 20 °C and 150 °C. The prototype compressor achieved compression of hydrogen from 150 bar to 700 bar with an average flow rate of 33.6 g/hr.

More Details
Results 201–225 of 2,290
Results 201–225 of 2,290