Publications

2 Results

Search results

Jump to search filters

Improved backscatter x-ray detection for anti-terrorist applications

Shope, Steven L.; Lockwood, Grant J.; Selph, M.M.; Wehlburg, Joseph C.

Currently the most common method to determine the contents of a package suspected of containing an explosive device is to use transmission radiography. This technique requires that an x-ray source and film be placed on opposite sides of the package. This poses a problem if the package is placed so that only one side is accessible, such as against a wall. There is also a threat to personnel and property since explosive devices may be booby trapped. The authors have developed a method to x-ray a package using backscattered x-rays based on similar work for landmine detection. This procedure eliminates the use of film behind the target. All of the detection is done from the same side as the source. Backscatter experiments at Sandia National Laboratories have been conducted on mock bombs in packages. They are able to readily identify the bomb components. The images that are obtained in this procedure are done in real time and the image is displayed on a computer screen. Preliminary experiments have also imaged objects within or behind a wall. They are currently using a scanning x-ray source and scintillating plastic detectors. It can take several hours to image a briefcase size object. This time could be reduced if better x-ray detection methods could be used. They have looked at using pinhole photography and CCD cameras to reduce this time.

More Details

High speed imaging for rash radiography using PIN diodes

Proceedings of SPIE - The International Society for Optical Engineering

Selph, M.M.

A high speed readout imaging system utilizing a commercial flash X-ray machine and miniature X-ray detectors has been developed. This system was designed to operate in the environment near a nuclear detonation where film or camera imaging cannot be used. The temporal resolution of the system is set by the 20 nanosecond FWHM of the X-ray pulse. The spatial resolution of the system was determined by the size and close packing of the PIN diodes used as the X-ray detectors. In the array used here, the PIN diodes have an active area of 2mm in diameter and were placed 3.8mm center to center. Computer-generated images using algorithms developed for this system are presented and compared with an image captured on film in the laboratory.

More Details
2 Results
2 Results