Publications

Results 83701–83800 of 96,771

Search results

Jump to search filters

Active Mixing in Microchannels using Surface Acoustic Wave Streaming on Lithium Niobate

Meyer, Grant D.; Bourdon, Christopher B.

We present an active method for mixing fluid streams in microchannels at low Reynolds number with no dead volume. To overcome diffusion limited mixing in microchannels, surface acoustic wave streaming offers an extremely effective approach to rapidly homogenize fluids. This is a pivotal improvement over mixers based on complex 3D microchannels which have significant dead volume resulting in trapping or loss of sample. Our micromixer is integrable and highly adaptable for use within existing microfluidic devices. Surface acoustic wave devices fabricated on 128° YX LiNbO3 permitted rapid mixing of flow streams as evidenced by fluorescence microscopy. Longitudinal waves created at the solid-liquid interface were capable of inducing strong nonlinear gradients within the bulk fluid. In the highly laminar regime (Re = 2), devices achieved over 93% mixing efficacy in less than a second. Micro-particle imaging velicometry was used to determine the mixing behavior in the microchannels and indicated that the liquid velocity can be controlled by varying the input power. Fluid velocities in excess of 3 cm•s-1 were measured in the main excitation region at low power levels (2.8mW). We believe that this technology will be pivotal in the development and advancement of microfluidic devices and applications.

More Details

Estimating electricity storage power rating and discharge duration for utility transmission and distribution deferral :a study for the DOE energy storage program

Butler, Paul C.

This report describes a methodology for estimating the power and energy capacities for electricity energy storage systems that can be used to defer costly upgrades to fully overloaded, or nearly overloaded, transmission and distribution (T&D) nodes. This ''sizing'' methodology may be used to estimate the amount of storage needed so that T&D upgrades may be deferred for one year. The same methodology can also be used to estimate the characteristics of storage needed for subsequent years of deferral.

More Details

Chirp Z-transform spectral zoom optimization with MATLAB

Martin, Grant D.

The MATLAB language has become a standard for rapid prototyping throughout all disciplines of engineering because the environment is easy to understand and use. Many of the basic functions included in MATLAB are those operations that are necessary to carry out larger algorithms such as the chirp z-transform spectral zoom. These functions include, but are not limited to mathematical operators, logical operators, array indexing, and the Fast Fourier Transform (FFT). However, despite its ease of use, MATLAB's technical computing language is interpreted and thus is not always capable of the memory management and performance of a compiled language. There are however, several optimizations that can be made within the chirp z-transform spectral zoom algorithm itself, and also to the MATLAB implementation in order to take full advantage of the computing environment and lower processing time and improve memory usage. To that end, this document's purpose is two-fold. The first demonstrates how to perform a chirp z-transform spectral zoom as well as an optimization within the algorithm that improves performance and memory usage. The second demonstrates a minor MATLAB language usage technique that can reduce overhead memory costs and improve performance.

More Details

Final report on LDRD project :leaky-mode VCSELs for photonic logic circuits

Serkland, Darwin K.; Geib, K.M.; Peake, Gregory M.; Hadley, G.R.; Hargett, Terry H.; Keeler, Gordon A.; Blansett, Ethan B.; Diaz, Melissa R.; Sullivan, Charles T.

This report describes the research accomplishments achieved under the LDRD Project ''Leaky-mode VCSELs for photonic logic circuits''. Leaky-mode vertical-cavity surface-emitting lasers (VCSELs) offer new possibilities for integration of microcavity lasers to create optical microsystems. A leaky-mode VCSEL output-couples light laterally, in the plane of the semiconductor wafer, which allows the light to interact with adjacent lasers, modulators, and detectors on the same wafer. The fabrication of leaky-mode VCSELs based on effective index modification was proposed and demonstrated at Sandia in 1999 but was not adequately developed for use in applications. The aim of this LDRD has been to advance the design and fabrication of leaky-mode VCSELs to the point where initial applications can be attempted. In the first and second years of this LDRD we concentrated on overcoming previous difficulties in the epitaxial growth and fabrication of these advanced VCSELs. In the third year, we focused on applications of leaky-mode VCSELs, such as all-optical processing circuits based on gain quenching.

More Details

Comparison of two methods to quantify cyber and physical security effectiveness

Wyss, Gregory D.

With the increasing reliance on cyber technology to operate and control physical security system components, there is a need for methods to assess and model the interactions between the cyber system and the physical security system to understand the effects of cyber technology on overall security system effectiveness. This paper evaluates two methodologies for their applicability to the combined cyber and physical security problem. The comparison metrics include probabilities of detection (P{sub D}), interruption (P{sub I}), and neutralization (P{sub N}), which contribute to calculating the probability of system effectiveness (P{sub E}), the probability that the system can thwart an adversary attack. P{sub E} is well understood in practical applications of physical security but when the cyber security component is added, system behavior becomes more complex and difficult to model. This paper examines two approaches (Bounding Analysis Approach (BAA) and Expected Value Approach (EVA)) to determine their applicability to the combined physical and cyber security issue. These methods were assessed for a variety of security system characteristics to determine whether reasonable security decisions could be made based on their results. The assessments provided insight on an adversary's behavior depending on what part of the physical security system is cyber-controlled. Analysis showed that the BAA is more suited to facility analyses than the EVA because it has the ability to identify and model an adversary's most desirable attack path.

More Details

Adaptive optical zoom sensor

Wick, David V.; Sweatt, W.C.

In order to optically vary the magnification of an imaging system, continuous mechanical zoom lenses require multiple optical elements and use fine mechanical motion to precisely adjust the separations between individual or groups of lenses. By incorporating active elements into the optical design, we have designed and demonstrated imaging systems that are capable of variable optical magnification with no macroscopic moving parts. Changing the effective focal length and magnification of an imaging system can be accomplished by adeptly positioning two or more active optics in the optical design and appropriately adjusting the optical power of those elements. In this application, the active optics (e.g. liquid crystal spatial light modulators or deformable mirrors) serve as variable focal-length lenses. Unfortunately, the range over which currently available devices can operate (i.e. their dynamic range) is relatively small. Therefore, the key to this concept is to create large changes in the effective focal length of the system with very small changes in the focal lengths of individual elements by leveraging the optical power of conventional optical elements surrounding the active optics. By appropriately designing the optical system, these variable focal-length lenses can provide the flexibility necessary to change the overall system focal length, and therefore magnification, that is normally accomplished with mechanical motion in conventional zoom lenses.

More Details

SNL/CA Cultural Resources Management Plan

Larsen, Barbara L.

The SNL/CA Cultural Resources Management Plan satisfies the site's Environmental Management System requirement to promote long-term stewardship of cultural resources. The plan summarizes the cultural and historical setting of the site, identifies existing procedures and processes that support protection and preservation of resources, and outlines actions that would be initiated if cultural resources were discovered onsite in the future.3

More Details

Final LDRD report :ultraviolet water purification systems for rural environments and mobile applications

Crawford, Mary H.; Ross, Michael P.; Ruby, Douglas S.; Allerman, A.A.

We present the results of a one year LDRD program that has focused on evaluating the use of newly developed deep ultraviolet LEDs in water purification. We describe our development efforts that have produced an LED-based water exposure set-up and enumerate the advances that have been made in deep UV LED performance throughout the project. The results of E. coli inactivation with 270-295 nm LEDs are presented along with an assessment of the potential for applying deep ultraviolet LED-based water purification to mobile point-of-use applications as well as to rural and international environments where the benefits of photovoltaic-powered systems can be realized.

More Details

Piezoelectric field in strained GaAs

Wieczorek, Sebastian; Chow, Weng W.

This report describes an investigation of the piezoelectric field in strained bulk GaAs. The bound charge distribution is calculated and suitable electrode configurations are proposed for (1) uniaxial and (2) biaxial strain. The screening of the piezoelectric field is studied for different impurity concentrations and sample lengths. Electric current due to the piezoelectric field is calculated for the cases of (1) fixed strain and (2) strain varying in time at a constant rate.

More Details

Rhombohedral AlPt films formed by self-propagating, high temperature synthesis

Rodriguez, Marko A.; Kotula, Paul G.

High-purity AlPt thin films prepared by self-propagating, high temperature combustion synthesis show evidence for a new rhombohedral phase. Sputter deposited Al/Pt multilayers of various designs are reacted at different rates in air and in vacuum, and each form a new trigonal/hexagonal aluminide phase with unit cell parameters a = 15.571(8) {angstrom}, c = 5.304(1) {angstrom}, space group R-3 (148), and Z, the number of formula units within a unit cell, = 39. The lattice is isostructural to that of the AlPd R-3 lattice as reported by Matkovic and Schubert (Matkovic, 1977). Reacted films have a random in-plane crystallographic texture, a modest out-of-plane (001) texture, and equiaxed grains with dimensions on the order of film thickness.

More Details

Profile-based adaptive anomaly detection for network security

Zhang, Pengchu Z.

As information systems become increasingly complex and pervasive, they become inextricably intertwined with the critical infrastructure of national, public, and private organizations. The problem of recognizing and evaluating threats against these complex, heterogeneous networks of cyber and physical components is a difficult one, yet a solution is vital to ensuring security. In this paper we investigate profile-based anomaly detection techniques that can be used to address this problem. We focus primarily on the area of network anomaly detection, but the approach could be extended to other problem domains. We investigate using several data analysis techniques to create profiles of network hosts and perform anomaly detection using those profiles. The ''profiles'' reduce multi-dimensional vectors representing ''normal behavior'' into fewer dimensions, thus allowing pattern and cluster discovery. New events are compared against the profiles, producing a quantitative measure of how ''anomalous'' the event is. Most network intrusion detection systems (IDSs) detect malicious behavior by searching for known patterns in the network traffic. This approach suffers from several weaknesses, including a lack of generalizability, an inability to detect stealthy or novel attacks, and lack of flexibility regarding alarm thresholds. Our research focuses on enhancing current IDS capabilities by addressing some of these shortcomings. We identify and evaluate promising techniques for data mining and machine-learning. The algorithms are ''trained'' by providing them with a series of data-points from ''normal'' network traffic. A successful algorithm can be trained automatically and efficiently, will have a low error rate (low false alarm and miss rates), and will be able to identify anomalies in ''pseudo real-time'' (i.e., while the intrusion is still in progress, rather than after the fact). We also build a prototype anomaly detection tool that demonstrates how the techniques might be integrated into an operational intrusion detection framework.

More Details

Vadose Zone Monitoring of Dairy Green Water Lagoons using Soil Solution Samplers

Coplen, Amy K.

Over the last decade, dairy farms in New Mexico have become an important component to the economy of many rural ranching and farming communities. Dairy operations are water intensive and use groundwater that otherwise would be used for irrigation purposes. Most dairies reuse their process/green water three times and utilize lined lagoons for temporary storage of green water. Leakage of water from lagoons can pose a risk to groundwater quality. Groundwater resource protection infrastructures at dairies are regulated by the New Mexico Environment Department which currently relies on monitoring wells installed in the saturated zone for detecting leakage of waste water lagoon liners. Here we present a proposal to monitor the unsaturated zone beneath the lagoons with soil water solution samplers to provide early detection of leaking liners. Early detection of leaking liners along with rapid repair can minimize contamination of aquifers and reduce dairy liability for aquifer remediation. Additionally, acceptance of vadose zone monitoring as a NMED requirement over saturated zone monitoring would very likely significantly reduce dairy startup and expansion costs. Acknowledgment Funding for this project was provided by the Sandia National Laboratories Small Business Assistance Program

More Details

Nuclear Energy Plant Optimization (NEPO) final report on aging and condition monitoring of low-voltage cable materials

Assink, Roger A.

This report summarizes results generated on a 5-year cable-aging program that constituted part of the Nuclear Energy Plant Optimization (NEPO) program, an effort cosponsored by the U. S. Department of Energy (DOE) and the Electric Power Research Institute (EPRI). The NEPO cable-aging effort concentrated on two important issues involving the development of better lifetime prediction methods as well as the development and testing of novel cable condition-monitoring (CM) techniques. To address improved life prediction methods, we first describe the use of time-temperature superposition principles, indicating how this approach improves the testing of the Arrhenius model by utilizing all of the experimentally generated data instead of a few selected and processed data points. Although reasonable superposition is often found, we show several cases where non-superposition is evident, a situation that violates the constant acceleration assumption normally used in accelerated aging studies. Long-term aging results over extended temperature ranges allow us to show that curvature in Arrhenius plots for elongation is a common occurrence. In all cases the curvature results in a lowering of the Arrhenius activation energy at lower temperatures implying that typical extrapolation of high temperature results over-estimates material lifetimes. The long-term results also allow us to test the significance of extrapolating through the crystalline melting point of semi-crystalline materials. By utilizing ultrasensitive oxygen consumption (UOC) measurements, we show that it is possible to probe the low temperature extrapolation region normally inaccessible to conventional accelerated aging studies. This allows the quantitative testing of the often-used Arrhenius extrapolation assumption. Such testing indicates that many materials again show evidence of ''downward'' curvature (E{sub a} values drop as the aging temperature is lowered) consistent with the limited elongation results and many literature results. It is also shown how the UOC approach allows the probing of temperatures that cross through the crystalline melting point region of semi-crystalline materials such as XLPO and EPR cable insulations. New results on combined environment aging of neoprene and hypalon cable jacketing materials are presented and offer additional evidence in support of our time-temperature-dose rate (t-T-DR) superposition approach that had been used successfully in the past for such situations.

More Details

Geomechanics of penetration :laboratory analog experiments using a modified split hopkinson pressure bar/impact testing procedure

Gettemy, Glen L.; Holcomb, David J.; Bronowski, David R.

This research continues previous efforts to re-focus the question of penetrability away from the behavior of the penetrator itself and toward understanding the dynamic, possibly strain-rate dependent, behavior of the affected materials. A modified split Hopkinson pressure bar technique is prototyped to determine the value of reproducing the stress states, and mechanical responses, of geomaterials observed in actual penetrator tests within a laboratory setting. Conceptually, this technique simulates the passage of the penetrator surface past any fixed point in the penetrator trajectory by allowing for a controlled stress-time function to be transmitted into a sample, thereby mimicking the 1D radial projection inherent to analyses of the cavity expansion problem. Test results from a suite of weak (unconfined compressive strength, or UCS, of 22 MPa) concrete samples, with incident strain rates of 100-250 s{sup -1}, show that the complex mechanical response includes both plastic and anelastic wave propagation, and is critically dependent on incident particle velocity and saturation state. For instance, examination of the transmitted stress-time data, and post-test volumetric measurements of pulverized material, provide independent estimates of the plasticized zone length (1-2 cm) formed for incident particle velocity of {approx}16.7 m/s. The results also shed light on the elastic or energy propagation property changes that occur in the concrete. For example, the pre- and post-test zero-stress elastic wave propagation velocities show that the Young's modulus drops from {approx}19 GPa to <8 GPa for material within the first centimeter from the plastic transition front, while the Young's modulus of the dynamically confined, axially-stressed (in 6-18 MPa range) plasticized material drops to 0.5-0.6 GPa. The data also suggest that the critical particle velocity for formation of a plastic zone in the weak concrete is 13-15 m/s, with increased saturation tending to increase the critical particle velocity limit. Overall, the data produced from these experiments suggests that further pursuit of this approach is warranted for penetration research but also as a potential new method for dynamic testing of materials.

More Details

Intrusion detection and monitoring for wireless networks

Vanrandwyk, Jamie V.; Thomas, Eric D.; Custer, Ryan C.; Lee, Erik L.; Kilman, Dominique K.; Franklin, Jason F.

Wireless computer networks are increasing exponentially around the world. They are being implemented in both the unlicensed radio frequency (RF) spectrum (IEEE 802.11a/b/g) and the licensed spectrum (e.g., Firetide [1] and Motorola Canopy [2]). Wireless networks operating in the unlicensed spectrum are by far the most popular wireless computer networks in existence. The open (i.e., proprietary) nature of the IEEE 802.11 protocols and the availability of ''free'' RF spectrum have encouraged many producers of enterprise and common off-the-shelf (COTS) computer networking equipment to jump into the wireless arena. Competition between these companies has driven down the price of 802.11 wireless networking equipment and has improved user experiences with such equipment. The end result has been an increased adoption of the equipment by businesses and consumers, the establishment of the Wi-Fi Alliance [3], and widespread use of the Alliance's ''Wi-Fi'' moniker to describe these networks. Consumers use 802.11 equipment at home to reduce the burden of running wires in existing construction, facilitate the sharing of broadband Internet services with roommates or neighbors, and increase their range of ''connectedness''. Private businesses and government entities (at all levels) are deploying wireless networks to reduce wiring costs, increase employee mobility, enable non-employees to access the Internet, and create an added revenue stream to their existing business models (coffee houses, airports, hotels, etc.). Municipalities (Philadelphia; San Francisco; Grand Haven, MI) are deploying wireless networks so they can bring broadband Internet access to places lacking such access; offer limited-speed broadband access to impoverished communities; offer broadband in places, such as marinas and state parks, that are passed over by traditional broadband providers; and provide themselves with higher quality, more complete network coverage for use by emergency responders and other municipal agencies. In short, these Wi-Fi networks are being deployed everywhere. Much thought has been and is being put into evaluating cost-benefit analyses of wired vs. wireless networks and issues such as how to effectively cover an office building or municipality, how to efficiently manage a large network of wireless access points (APs), and how to save money by replacing an Internet service provider (ISP) with 802.11 technology. In comparison, very little thought and money are being focused on wireless security and monitoring for security purposes.

More Details

SAR polar format implementation with MATLAB

Martin, Grant D.; Doerry, Armin

Traditional polar format image formation for Synthetic Aperture Radar (SAR) requires a large amount of processing power and memory in order to accomplish in real-time. These requirements can thus eliminate the possible usage of interpreted language environments such as MATLAB. However, with trapezoidal aperture phase history collection and changes to the traditional polar format algorithm, certain optimizations make MATLAB a possible tool for image formation. Thus, this document's purpose is two-fold. The first outlines a change to the existing Polar Format MATLAB implementation utilizing the Chirp Z-Transform that improves performance and memory usage achieving near realtime results for smaller apertures. The second is the addition of two new possible image formation options that perform a more traditional interpolation style image formation. These options allow the continued exploration of possible interpolation methods for image formation and some preliminary results comparing image quality are given.

More Details

Genomics :GTL project quarterly report April 2005

Heffelfinger, Grant S.; Martino, Anthony M.; Rintoul, Mark D.

This SAND report provides the technical progress through April 2005 of the Sandia-led project, ''Carbon Sequestration in Synechococcus Sp.: From Molecular Machines to Hierarchical Modeling'', funded by the DOE Office of Science GenomicsGTL Program. Understanding, predicting, and perhaps manipulating carbon fixation in the oceans has long been a major focus of biological oceanography and has more recently been of interest to a broader audience of scientists and policy makers. It is clear that the oceanic sinks and sources of CO{sub 2} are important terms in the global environmental response to anthropogenic atmospheric inputs of CO{sub 2} and that oceanic microorganisms play a key role in this response. However, the relationship between this global phenomenon and the biochemical mechanisms of carbon fixation in these microorganisms is poorly understood. In this project, we will investigate the carbon sequestration behavior of Synechococcus Sp., an abundant marine cyanobacteria known to be important to environmental responses to carbon dioxide levels, through experimental and computational methods. This project is a combined experimental and computational effort with emphasis on developing and applying new computational tools and methods. Our experimental effort will provide the biology and data to drive the computational efforts and include significant investment in developing new experimental methods for uncovering protein partners, characterizing protein complexes, identifying new binding domains. We will also develop and apply new data measurement and statistical methods for analyzing microamy experiments. Computational tools will be essential to our efforts to discover and characterize the function of the molecular machines of Synechococcus. To this end, molecular simulation methods will be coupled with knowledge discovery from diverse biological data sets for high-throughput discovery and characterization of protein-protein complexes. In addition, we will develop a set of novel capabilities for inference of regulatory pathways in microbial genomes across multiple sources of information through the integration of computational and experimental technologies. These capabilities will be applied to Synechococcus regulatory pathways to characterize their interaction map and identify component proteins in these pathways. We will also investigate methods for combining experimental and computational results with visualization and natural language tools to accelerate discovery of regulatory pathways. The ultimate goal of this effort is develop and apply new experimental and computational methods needed to generate a new level of understanding of how the Synechococcus genome affects carbon fixation at the global scale. Anticipated experimental and computational methods will provide ever-increasing insight about the individual elements and steps in the carbon fixation process, however relating an organism's genome to its cellular response in the presence of varying environments will require systems biology approaches. Thus a primary goal for this effort is to integrate the genomic data generated from experiments and lower level simulations with data from the existing body of literature into a whole cell model. We plan to accomplish this by developing and applying a set of tools for capturing the carbon fixation behavior of complex of Synechococcus at different levels of resolution. Finally, the explosion of data being produced by high-throughput experiments requires data analysis and models which are more computationally complex, more heterogeneous, and require coupling to ever increasing amounts of experimentally obtained data in varying formats. These challenges are unprecedented in high performance scientific computing and necessitate the development of a companion computational infrastructure to support this effort.

More Details

LASER TRIGGERED GAS SWITCHES UTILIZING BEAM TRANSPORT THROUGH 1 MO-cm DEIONIZED WATER

Woodworth, Joseph R.; Lehr, J.M.; Zameroski, Nathan D.

We report on the successful attempts to trigger high voltage pressurized gas switches by utilizing beam transport through 1 MO-cm deionized water. The wavelength of the laser radiation was 532 nm. We have investigated Nd: YAG laser triggering of a 6 MV, SF6 insulated gas switch for a range of laser and switch parameters. Laser wavelength of 532 nm with nominal pulse lengths of 10 ns full width half maximum (FWHM) were used to trigger the switch. The laser beam was transported through 67 cm-long cell of 1 MO-cm deionized water constructed with anti reflection UV grade fused silica windows. The laser beam was then focused to form a breakdown arc in the gas between switch electrodes. Less than 10 ns jitter in the operation of the switch was obtained for laser pulse energies of between 80-110 mJ. Breakdown arcs more than 35 mm-long were produced by using a 70 cm focusing optic.

More Details
Results 83701–83800 of 96,771
Results 83701–83800 of 96,771