Publications

Results 73601–73700 of 99,299

Search results

Jump to search filters

Evolution of mechanical properties in ErT2 films

Knapp, J.A.

The mechanical properties of rare earth tritide films evolve as tritium decays into {sup 3}He, which forms bubbles that influence long-term film stability in applications such as neutron generators. Ultralow load nanoindentation, combined with finite-element modeling to separate the mechanical properties of the thin films from their substrates, has been used to follow the mechanical properties of model ErT{sub 2} films as they aged. The size of the growing {sup 3}He bubbles was followed with transmission electron microscopy, while ion beam analysis was used to monitor total T and {sup 3}He content. The observed behavior is divided into two regimes: a substantial increase in layer hardness but elasticity changed little over {approx}18 months, followed by a decrease in elastic stiffness and a modest decease in hardness over the final 24 months. We show that the evolution of properties is explained by a combination of dislocation pinning by the bubbles, elastic softening as the bubbles occupy an increasing fraction of the material, and details of bubble growth modes.

More Details

In situ TEM straining of nanograined free-standing thin films reveals various unexpected deformation mechanisms

Clark, Blythe C.; Knapp, J.A.

In-situ transmission electron microscopy (TEM) straining experiments provide direct detailed observation of the deformation and failure mechanisms active at a length scale relevant to nanomaterials. This presentation will detail continued investigations into the active mechanisms governing high purity nanograined pulsed-laser deposited (PLD) nickel, as well as recent work into dislocation-particle interactions in nanostructured PLD aluminum-alumina alloys. Straining experiments performed on nanograined PLD free-standing nanograined Ni films with an engineered grain size distribution revealed that the addition of ductility with limited decrease in strength, reported in such metals, can be attributed to the simultaneous activity of three deformation mechanisms in front of the crack tip. At the crack tip, a grain agglomeration mechanism occurs where several nanograins appear to rotate, resulting in a very thin, larger grain immediately prior to failure. In the classical plastic zone in front of the crack tip, a multitude of mechanisms were found to operate in the larger grains including: dislocation pile-up, twinning, and stress-assisted grain growth. The region outside of the plastic zone showed signs of elasticity with limited indications of dislocation activity. The insight gained from in-situ TEM straining experiments of nanograined PLD Ni provides feedback for models of the deformation and failure in nanograined FCC metals, and suggests a greater complexity in the active mechanisms. The investigation into the deformation and failure mechanisms of FCC metals via in-situ TEM straining experiments has been expanded to the effect of hard particles on the active mechanisms in nanograined aluminum with alumina particles. The microstructures investigated were developed with varying composition, grain size, and particle distribution via tailoring of the PLD conditions and subsequent annealing. In order to develop microstructures suitable for in-situ deformation testing, in-situ TEM annealing experiments were performed, revealing the effect of nanoparticle precipitates on grain growth. These films were then strained in the TEM and the resulting microstructural evolution will be discussed. In-situ TEM straining experiments currently provide a wealth of information into plasticity within nanomaterials and can potentially, with further development of TEM and nanofabrication tools, provide even greater investigative capabilities.

More Details

The Gulf Nuclear Energy Infrastructure Institute : an integrated approach to safety, security & safeguards

Mohagheghi, Amir H.

Sandia National Laboratories (SNL) and the Nuclear Security Science and Policy Institute (NSSPI) at Texas A&M University are working with Middle East regional partners to set up a nuclear energy safety, safeguards, and security educational institute in the Gulf region. SNL and NSSPI, partnered with the Khalifa University of Science, Technology, and Research (KUSTAR), with suppot from its key nuclear stakeholders, the Emirates Nuclear Energy Corporation (ENEC), and the Federal Authority for Nuclear Regulation (FANR), plan to jointly establish the institute in Abu Dhabi. The Gulf Nuclear Energy Infrastructure Institute (GNEII) will be a KUSTAR-associated, credit-granting regional education program providing both classroom instruction and hands-on experience. The ultimate objective is for GNEII to be autonomous - regionally funded and staffed with personnel capable of teaching all GNEII courses five years after its inauguration. This is a strategic effort to indigenize a responsible nuclear energy culture - a culture shaped by an integrated understanding of nuclear safety, safeguards and security - in regional nuclear energy programs. GNEII also promotes international interests in developing a nuclear energy security and safety culture, increases collaboration between the nuclear energy security and safety communities, and helps to enhance global standards for nuclear energy technology in the Middle East.

More Details

The Gulf Nuclear Energy Infrastructure Institute : an integrated approach to safety, security and safeguards

Mohagheghi, Amir H.

Sandia National Laboratories (SNL) and the Nuclear Security Science and Policy Institute (NSSPI) at Texas A&M University are working with Middle East regional partners to set up a nuclear energy safety, safeguards, and security educational institute in the Gulf region. SNL and NSSPI, partnered with the Khalifa University of Science, Technology, and Research (KUSTAR), with suppot from its key nuclear stakeholders, the Emirates Nuclear Energy Corporation (ENEC), and the Federal Authority for Nuclear Regulation (FANR), plan to jointly establish the institute in Abu Dhabi. The Gulf Nuclear Energy Infrastructure Institute (GNEII) will be a KUSTAR-associated, credit-granting regional education program providing both classroom instruction and hands-on experience. The ultimate objective is for GNEII to be autonomous - regionally funded and staffed with personnel capable of teaching all GNEII courses five years after its inauguration. This is a strategic effort to indigenize a responsible nuclear energy culture - a culture shaped by an integrated understanding of nuclear safety, safeguards and security - in regional nuclear energy programs. GNEII also promotes international interests in developing a nuclear energy security and safety culture, increases collaboration between the nuclear energy security and safety communities, and helps to enhance global standards for nuclear energy technology in the Middle East.

More Details

The high current, fast, 100ns, Linear Transformer Driver (LTD) developmental project at Sandia National Laboratories

LeChien, Keith R.; Woodworth, Joseph R.; Fowler, William E.; Long, Finis W.; Matzen, M.K.; McDaniel, Dillon H.; Mckee, G.R.; Struve, Kenneth; Stygar, William A.

Sandia National Laboratories, Albuquerque, N.M., USA, in collaboration with the High Current Electronic Institute (HCEI), Tomsk, Russia, is developing a new paradigm in pulsed power technology: the Linear Transformer Driver (LTD) technology. This technological approach can provide very compact devices that can deliver very fast high current and high voltage pulses straight out of the cavity with out any complicated pulse forming and pulse compression network. Through multistage inductively insulated voltage adders, the output pulse, increased in voltage amplitude, can be applied directly to the load. The load may be a vacuum electron diode, a z-pinch wire array, a gas puff, a liner, an isentropic compression load (ICE) to study material behavior under very high magnetic fields, or a fusion energy (IFE) target. This is because the output pulse rise time and width can be easily tailored to the specific application needs. In this paper we briefly summarize the developmental work done in Sandia and HCEI during the last few years, and describe our new MYKONOS Sandia High Current LTD Laboratory.

More Details

Development of chemical kinetic models for lean NOx traps

Larson, Richard S.

Overall project goal: Obtain the fundamental surface chemistry knowledge needed for the design and optimal utilization of NOx trap catalysts, thereby helping to speed the widespread adoption of this technology. Relevance to VT Program goals: Effective, durable advanced aftertreatment systems for lean-burn engines must be available if the fuel economy advantages of these engines are to be realized. Specific current year objective: Identify and correct any deficiencies in the previously developed reaction mechanism describing normal storage/regeneration cycles, and complete development of a supplementary mechanism accounting for the effects of sulfation. A fundamental understanding of LNT chemistry is needed to realize the full potential of this aftertreatment technology, which could lead to greater use of fuel-efficient lean-burn engines. We have used a multi-tiered approach to developing an elementary chemical mechanism benchmarked against experimental data: (1) Simulate a set of steady flow experiments, with storage effects minimized, to infer a tentative mechanism for chemistry on precious metal sites (completed). (2) Simulate a set of long cycle experiments to infer a mechanism for NOx and oxygen storage sites while simultaneously finalizing precious metal chemistry (completed). (3) Simulate a simplified sulfation/desulfation protocol to obtain a supplementary set of reactions involving sulfur on all three kinds of sites (nearly completed). (4) Investigate the potential role of reductants other than CO and H{sub 2}. While simulation of isothermal experiments is the preferred way to extract kinetic parameters, simulation of realistic storage/regeneration cycles requires that exotherms be considered. Our ultimate goal is to facilitate improved designs for LNT-based aftertreatment systems and to assist in the development of improved catalysts.

More Details

Tunable thermodynamics and kinetics for hydrogen storage : nanoparticle synthesis using ordered polymertemplates

Bhakta, Raghunandan K.

Theory and experiment suggest nanoscale hydride particles are destabilized relative to bulk, but the origin of this effect is unclear. Both size and local environment may play a role. The overall project objective is to achieve tunable thermodynamics for hydrogen storage materials by controlling nanoparticle size, composition, and environment. Key Goals for FY09 are: (1) Demonstrate and downselect infiltration methods; (2) Measure desorption kinetics for MgH{sub 2} and NaAlH{sub 4} nanoparticles and LiBH{sub 4} thin films; (3) Benchmark DFT and atomistic nanoparticle models using Quantum Monte Carlo (QMC); and (4) Quantify effect of nanoparticle size on {Delta}H{sub d}{sup o} using MgH{sub 2} as initial example. Summary of the key results are: (1) New highly ordered nanoporous templates enable systematic probing of nanoscale effects - Nanoscale NaAlH{sub 4} particles (as small as 1.5 nm diameter) exhibit improved H{sub 2} desorption kinetics relative to bulk and Preliminary data suggest MgH{sub 2} nanoparticle formation and possibly improved desorption kinetics; (2) Benchmarking DFT against QMC reveals significant errors that are non-systematic (H{sub 2} desorption energies underpredicted by as much as 30 kJ/mol); (3) QMC predicts greatest effect of size is for extremely small particles; e.g. (MgH{sub 2}){sub n}, n {le} 6 which is much smaller than predicted by Wolfe construction approach and observed in experiments and it suggests factors other than electronic structure (e.g. surrounding chemical environment) influence stability; (4) New NanoPEGS code developed and tested for MgH{sub 2} 2particles; and (5) New mass spec tool (STMBMS) reveals key details of hydrogen desorption process.

More Details

Materials compatibility

Somerday, Brian P.

Objectives are to enable development and implementation of codes and standards for H{sub 2} containment components: (1) Evaluate data on mechanical properties of materials in H{sub 2} gas - Technical Reference on Hydrogen Compatibility of Materials; (2) Generate new benchmark data on high-priority materials - Pressure vessel steels, stainless steels; and (3) Establish procedures for reliable materials testing - Sustained-load cracking, fatigue crack propagation. Summary of this presentation are: (1) Completed measurement of cracking thresholds (K{sub TH}) for Ni-Cr-Mo pressure vessel steels in high-pressure H{sub 2} gas - K{sub TH} measurements required in ASME Article KD-10 (2) Crack arrest test methods appear to yield non-conservative results compared to crack initiation test methods - (a) Proposal to insert crack initiation test methods in Article KD-10 will be presented to ASME Project Team on Hydrogen Tanks, and (b) Crack initiation methods require test apparatus designed for dynamic loading of specimens in H{sub 2} gas; and (3) Demonstrated ability to measure fatigue crack growth of pressure vessel steels in high-pressure H{sub 2} gas - (a) Fatigue crack growth data in H{sub 2} required in ASME Article KD-10, and (b) Test apparatus is one of few in U.S. or abroad for measuring fatigue crack growth in >100 MPa H{sub 2} gas.

More Details

Update on microkinetic modeling of lean NOx trap chemistry

Larson, Richard S.

Our previously developed microkinetic model for lean NOx trap (LNT) storage and regeneration has been updated to address some longstanding issues, in particular the formation of N2O during the regeneration phase at low temperatures. To this finalized mechanism has been added a relatively simple (12-step) scheme that accounts semi-quantitatively for the main features observed during sulfation and desulfation experiments, namely (a) the essentially complete trapping of SO2 at normal LNT operating temperatures, (b) the plug-like sulfation of both barium oxide (NOx storage) and cerium oxide (oxygen storage) sites, (c) the degradation of NOx storage behavior arising from sulfation, (d) the evolution of H2S and SO2 during high temperature desulfation (temperature programmed reduction) under H2, and (e) the complete restoration of NOx storage capacity achievable through the chosen desulfation procedure.

More Details

Lustre on Red Sky

Monk, Stephen T.

The goals of Lustre on Red Sky are: (1) provide home/projects/scratch Lustre file systems; (2) adhere to the Sun HPC stack; (3) implement software RAID on Sun provided JBODs; and (4) design for easy administration. Conclusions are: (1) software RAID includes additional risks and administration vs. hardware RAID solutions; (2) limited testing of hardware in these configurations make it ill-suited for rapid deployment in a production environment; and (3) Lustre has been a shining star on this machine, Red Sky users are pleased with its performance.

More Details

Absolute calibration method for fast-streaked, fiber optic light collection, spectroscopy systems

Johnston, Mark D.; Oliver, Bryan V.

This report outlines a convenient method to calibrate fast (<1ns resolution) streaked, fiber optic light collection, spectroscopy systems. Such a system is used to collect spectral data on plasmas generated in the A-K gap of electron beam diodes fielded on the RITS-6 accelerator (8-12MV, 140-200kA). On RITS, light is collected through a small diameter (200 micron) optical fiber and recorded on a fast streak camera at the output of 1 meter Czerny-Turner monochromator (F/7 optics). To calibrate such a system, it is necessary to efficiently couple light from a spectral lamp into a 200 micron diameter fiber, split it into its spectral components, with 10 Angstroms or less resolution, and record it on a streak camera with 1ns or less temporal resolution.

More Details

Performance characterization of a hydrogen catalytic heater

Johnson, Terry A.; Kanouff, Michael P.

This report describes the performance of a high efficiency, compact heater that uses the catalytic oxidation of hydrogen to provide heat to the GM Hydrogen Storage Demonstration System. The heater was designed to transfer up to 30 kW of heat from the catalytic reaction to a circulating heat transfer fluid. The fluid then transfers the heat to one or more of the four hydrogen storage modules that make up the Demonstration System to drive off the chemically bound hydrogen. The heater consists of three main parts: (1) the reactor, (2) the gas heat recuperator, and (3) oil and gas flow distribution manifolds. The reactor and recuperator are integrated, compact, finned-plate heat exchangers to maximize heat transfer efficiency and minimize mass and volume. Detailed, three-dimensional, multi-physics computational models were used to design and optimize the system. At full power the heater was able to catalytically combust a 10% hydrogen/air mixture flowing at over 80 cubic feet per minute and transfer 30 kW of heat to a 30 gallon per minute flow of oil over a temperature range from 100 C to 220 C. The total efficiency of the catalytic heater, defined as the heat transferred to the oil divided by the inlet hydrogen chemical energy, was characterized and methods for improvement were investigated.

More Details

Size effects in Ni/Ni(OH)2 nanomaterials for electrochemical capacitors

Limmer, S.J.; Yelton, W.G.; Bunker, B.C.

Electrochemical capacitors based on redox-active metal oxides show great promise for many energy-storage applications. These materials store charge through both electric double-layer charging and faradaic reactions in the oxide. The dimensions of the oxide nanomaterials have a strong influence on the performance of such capacitors. Not just due to surface area effects, which influence the double-layer capacitance, but also through bulk electrical and ionic conductivities. Ni(OH)2 is a prime candidate for such applications, due to low cost and high theoretical capacity. We have examined the relationship between diameter and capacity for Ni/Ni(OH)2 nanorods. Specific capacitances of up to 511 F/g of Ni were recorded in 47 nm diameter Ni(OH)2 nanorods.

More Details

Nanoporous carbon for electrochemical capacitors

Limmer, S.J.; Yelton, W.G.; Siegal, Michael P.; Overmyer, Donald L.; Bunker, B.C.

Nanoporous carbon (NPC) is a purely graphitic material with highly controlled densities ranging from less than 0.1 to 2.0 g/cm3, grown via pulsed-laser deposition. Decreasing the density of NPC increases the interplanar spacing between graphene-sheet fragments. This ability to tune the interplanar spacing makes NPC an ideal model system to study the behavior of carbon electrodes in electrochemical capacitors and batteries. We examine the capacitance of NPC films in alkaline and acidic electrolytes, and measure specific capacitances as high as 242 F/g.

More Details

Assessment of simulation predictions of hydrocarbon pool fire tests

Luketa, Anay

An uncertainty quantification (UQ) analysis is performed on the fuel regression rate model within SIERRA/Fuego by comparing to a series of hydrocarbon tests performed in the Thermal Test Complex. The fuels used for comparison for the fuel regression rate model include methanol, ethanol, JP8, and heptane. The recently implemented flamelet combustion model is also assessed with a limited comparison to data involving measurements of temperature and relative mole fractions within a 2-m diameter methanol pool fire. The comparison of the current fuel regression rate model to data without UQ indicates that the model over predicts the fuel regression rate by 65% for methanol, 63% for ethanol, 95% for JP8, and 15% for heptane. If a UQ analysis is performed incorporating a range of values for transmittance, reflectance, and heat flux at the surface the current model predicts fuel regression rates within 50% of measured values. An alternative model which uses specific heats at inlet and boiling temperatures respectively and does not approximate the sensible heat is also compared to data. The alternative model with UQ significantly improves the comparison to within 25% for all fuels except heptane. Even though the proposed alternative model provides better agreement to data, particularly for JP8 and ethanol (within 15%), there are still outstanding issues regarding significant uncertainties which include heat flux gauge measurement and placement, boiling at the fuel surface, large scale convective motion within the liquid, and semi-transparent behavior.

More Details

Signature molecular descriptor : advanced applications

In this work we report on the development of the Signature Molecular Descriptor (or Signature) for use in the solution of inverse design problems as well as in highthroughput screening applications. The ultimate goal of using Signature is to identify novel and non-intuitive chemical structures with optimal predicted properties for a given application. We demonstrate this in three studies: green solvent design, glucocorticoid receptor ligand design and the design of inhibitors for Factor XIa. In many areas of engineering, compounds are designed and/or modified in incremental ways which rely upon heuristics or institutional knowledge. Often multiple experiments are performed and the optimal compound is identified in this brute-force fashion. Perhaps a traditional chemical scaffold is identified and movement of a substituent group around a ring constitutes the whole of the design process. Also notably, a chemical being evaluated in one area might demonstrate properties very attractive in another area and serendipity was the mechanism for solution. In contrast to such approaches, computer-aided molecular design (CAMD) looks to encompass both experimental and heuristic-based knowledge into a strategy that will design a molecule on a computer to meet a given target. Depending on the algorithm employed, the molecule which is designed might be quite novel (re: no CAS registration number) and/or non-intuitive relative to what is known about the problem at hand. While CAMD is a fairly recent strategy (dating to the early 1980s), it contains a variety of bottlenecks and limitations which have prevented the technique from garnering more attention in the academic, governmental and industrial institutions. A main reason for this is how the molecules are described in the computer. This step can control how models are developed for the properties of interest on a given problem as well as how to go from an output of the algorithm to an actual chemical structure. This report provides details on a technique to describe molecules on a computer, called Signature, as well as the computer-aided molecule design algorithm built around Signature. Two applications are provided of the CAMD algorithm with Signature. The first describes the design of green solvents based on data in the GlaxoSmithKline (GSK) Solvent Selection Guide. The second provides novel non-steroidal glucocorticoid receptor ligands with some optimally predicted properties. In addition to using the CAMD algorithm with Signature, it is demonstrated how to employ Signature in a high-throughput screening study. Here, after classifying both active and inactive inhibitors for the protein Factor XIa using Signature, the model developed is used to screen a large, publicly-available database called PubChem for the most active compounds.

More Details

Assessing group interaction with social language network analysis

Scholand, Andrew J.

In this paper we discuss a new methodology, social language network analysis (SLNA), that combines tools from social language processing and network analysis to assess socially situated working relationships within a group. Specifically, SLNA aims to identify and characterize the nature of working relationships by processing artifacts generated with computer-mediated communication systems, such as instant message texts or emails. Because social language processing is able to identify psychological, social, and emotional processes that individuals are not able to fully mask, social language network analysis can clarify and highlight complex interdependencies between group members, even when these relationships are latent or unrecognized.

More Details

DSMC predictions of non-equilibrium reaction rates

Gallis, Michael A.; Bond, Ryan B.; Torczynski, John R.

A set of Direct Simulation Monte Carlo (DSMC) chemical-reaction models recently proposed by Bird and based solely on the collision energy and the vibrational energy levels of the species involved is applied to calculate nonequilibrium chemical-reaction rates for atmospheric reactions in hypersonic flows. The DSMC non-equilibrium model predictions are in good agreement with theoretical models and experimental measurements. The observed agreement provides strong evidence that modeling chemical reactions using only the collision energy and the vibrational energy levels provides an accurate method for predicting non-equilibrium chemical-reaction rates.

More Details

Hydrogen release behavior

Houf, William G.

The summary of this presentation is: (1) Barrier walls are used to reduce setbacks by factor of 2; (2) We found no ignition-timing vs. over-pressure sensitivities for jet flow obstructed by barrier walls; (3) Cryogenic vapor cloud model indicates hazard length scales exceed the room-temperature release; validation experiments are required to confirm; (4) Light-up maps developed for lean limit ignition; flammability factor model provides good indication of ignition probability; and (5) Auto-ignition is enhanced by blunt-body obstructions - increases gas temperature and promotes fuel/air mixing.

More Details
Results 73601–73700 of 99,299
Results 73601–73700 of 99,299