Publications

Results 3251–3300 of 99,299

Search results

Jump to search filters

Acoustic Research under the Source Physics Experiment

Dannemann Dugick, Fransiska K.; Wilson, Trevor C.; Bowman, Daniel; Kim, Keehoon; Blom, Philip S.

The Source Physics Experiment series is a long-term research and development (R&D) effort under the U.S. Department of Energy’s National Nuclear Security Administration focused on improving the physical understanding of how chemical explosions generate seismoacoustic signals. Beginning in 2011, a series of subsurface chemical explosions in two different and highly contrasting geologies were conducted at the Nevada National Security Site in Nevada, USA with the objective of improving simulation and modeling approaches to explosion identification, yield estimation and other monitoring applications. The two executed phases of the series provide new explosion signature source data from a wide range of geophysical diagnostic equipment; recorded data from the test series is now openly available to the broader seismoacoustic community. This manuscript details the executed test series, deployed seismoacoustic networks, and summarizes major scientific achievements utilizing recorded signatures from the explosive tests.

More Details

A Thermodynamic Model for Nd(III)–Sulfate Interaction at High Ionic Strengths and Elevated Temperatures: Applications to Rare Earth Element Extraction

Journal of Solution Chemistry

Xiong, Yongliang; Xu, Guangping; Wang, Yifeng

Neodymium (Nd), a rare earth element (REE), is critical to numerous industries. Neodymium can be extracted from ore concentrates, waste materials, or recycled materials such as recycled Nd-Fe-B permanent magnets. In a standard process, concentrated sulfuric acid (H2SO4) is used as an extraction/leaching agent. Therefore, knowledge of Nd(III)–sulfate interaction at high ionic strengths is important for optimization of the extraction process. In addition, sulfate is also a major species in natural surface waters and present in nuclear waste streams. Nd(III) has been used a chemical analog to trivalent actinides in nuclear waste research and development. Consequently, knowledge of Nd(III)-sulfate interactions is also impactful to the field of nuclear waste management. In this study, we have developed a thermodynamic model that can describe the interaction of Nd(III) with sulfate to ionic strengths up to ~ 16.5 mol·kg–1 and to temperatures up to 100 °C. The model adopts the Pitzer formulation to describe activity coefficients of aqueous species. This model can be used to design and optimize a chemical process for REE recovery from ore concentrates, recycled materials, and acid mine drainage (AMD) and to understand the mobility of REEs and actinides in the environment.

More Details

Genome Sequence of Mycobacteriophage Bassalto

Microbiology Resource Announcements

Barekzi, Nazir; Wilkins, Meagan N.; Williams, Aumon L.; Moore, Afiya J.; Duckett, Zachary R.; Tindall, Danielle M.; Eaddy, Donnetta R.; Johnson, Mary B.; Bass, Malcolm; Mageeney, Catherine M.

Bassalto is a newly isolated phage of Mycobacterium smegmatis mc2155 from the campus grounds of Norfolk State University in Norfolk, VA. Bassalto belongs to the cluster B and subcluster B3 mycobacteriophages, based on the nucleotide composition and comparison to known mycobacteriophages.

More Details

PV module operating conditions and temperature measurements: an open dataset for PV research

Driesse, Anton; Theristis, Marios; Stein, Joshua

This report describes the structure and content of an open dataset created for the purpose of testing and validating PV module temperature prediction models and their parameters. The dataset contains the main environmental parameters that affect temperature: irradiance, ambient temperature, wind speed and down-welling infrared radiation, as well as measured back-of-module temperature.

More Details

Influence of Realistic, Cyclic Atmospheric Cycles on the Pitting Corrosion of Austenitic Stainless Steels

Journal of the Electrochemical Society

Schaller, Rebecca S.; Karasz, Erin K.; Bryan, C.R.; Snow, J.; Taylor, Jason M.; Kelly, R.G.; Montoya, T.

Pitting corrosion was evaluated on stainless steels 304H, 304, and 316L the surfaces of which had ASTM seawater printed on them as a function of surface roughness after exposure to an exemplar realistic atmospheric diurnal cycle for up to one year. Methods to evaluate pitting damage included optical imaging, scanning electron microscopy imaging, profilometry analysis, and polarization scans. The developed cyclic exposure environment did not significantly influence pitting morphology nor depth in comparison to prior static exposure environments. Cross-hatching was observed in a majority of pits for all material compositions with the roughest surface finish (#4 finish) and in all surface finishes for the 304H composition. Evidence is provided that cross-hatched pit morphologies are caused by slip bands produced during the grinding process for the #4 finish or by material processing. Additionally, micro-cracking was observed in pits formed on samples with the #4 surface finish and was greatly reduced or absent for pits formed on samples with smooth surface finishes. This suggests that both a low RH leading to an MgCl2-dominated environment and a rough surface containing significant residual stress are necessary for micro-cracking. Finally, the use of various characterization techniques and cross sectioning was employed to both qualitatively and quantitatively assess pitting damage across all SS compositions and surface finishes.

More Details

Using Eye-Tracking to Quantify Reverse Engineering Expertise

Stites, Mallory C.; Matzen, Laura E.; Rodhouse, Kathryn N.; Howell, Breannan C.; Rogers, Alisa

Software reverse engineering (RE) requires analysts to closely read and make decisions about code. Little is known about what makes an analyst successful, making it difficult to train new analysts or design tools to augment existing ones. The goal of this project was to quantify the eye movement behaviors supporting RE and code comprehension more generally. We applied eye-tracking methods from the language comprehension literature to understand where analysts direct their attention over time when completing tasks (e.g., function identification, bug detection). Across three studies, we manipulated aspects of code hypothesized to impact comprehension (e.g., variable name meaningfulness, code complexity) and presentation methods (e.g., line-by-line, free viewing, gaze-contingent moving window) to understand effects on accuracy and gaze patterns. Results showed clear benefits of meaningful variable names, and effects of expertise on global and line-specific viewing patterns. Findings could inspire empirically-supported tool or analytic adaptations that help to reduce analyst workload.

More Details

Increased range and contrast in fog with circularly polarized imaging

Applied Optics

Vanderlaan, John D.; Redman, Brian J.; Segal, Jacob W.; Westlake, Karl; Wright, Jeremy B.; Bentz, Brian Z.

Fogs, low lying clouds, and other highly scattering environments pose a challenge for many commercial and national security sensing systems. Current autonomous systems rely on optical sensors for navigation whose performance is degraded by highly scattering environments. In our previous simulation work, we have shown that polarized light can penetrate through a scattering environment such as fog. We have demonstrated that circularly polarized light maintains its initial polarization state better than linearly polarized light, even through large numbers of scattering events and thus ranges. This has recently been experimentally verified by other researchers. In this work, we present the design, construction, and testing of active polarization imagers at short-wave infrared and visible wavelengths. We explore multiple polarimetric configurations for the imagers, focusing on linear and circular polarization states. The polarized imagers were tested at the Sandia National Laboratories Fog Chamber under realistic fog conditions. We show that active circular polarization imagers can increase range and contrast in fog better than linear polarization imagers. We show that when imaging typical road sign and safety retro-reflective films, circularly polarized imaging has enhanced contrast throughout most fog densities/ranges compared to linearly polarized imaging and can penetrate over 15 to 25 m into the fog beyond the range limit of linearly polarized imaging, with a strong dependence on the interaction of the polarization state with the target materials.

More Details

Pyrolysis of Oils from Unconventional Resources

Energies

Donaldson, Burl; Coker, Eric N.

In this study, oils from various sources were subjected to pyrolysis conditions; that is, without oxidizer, as the samples were heated to 500 °C, and held at that temperature. The oils studied included: (1) heavy oil from Grassy Creek, Missouri; (2) oil from tar sands of Asphalt Ridge in Utah; (3) mid-continent oil shales of three formations (two of Chattanooga formation, Pennsylvanian (age) formation, and Woodford formation); and (4) a Colorado Piceance Basin shale. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) with either gas chromatography (GC) or mass spectrometry (MS) were used to quantify the produced gases evolved in the tests. Purge gases of helium, argon, and humid carbon dioxide were utilized. Larger scale pyrolysis tests were conducted in a tube furnace coupled to a MS and a GC. The results consistently showed that pyrolysis occurred between 300 °C and 500 °C, with the majority of gases being mainly hydrogen and light alkanes. This behavior was essentially consistent, regardless of the oil source.

More Details

Code-verification techniques for the method-of-moments implementation of the magnetic-field integral equation

Journal of Computational Physics

Freno, Brian A.; Matula, Neil

For computational physics simulations, code verification plays a major role in establishing the credibility of the results by assessing the correctness of the implementation of the underlying numerical methods. In computational electromagnetics, surface integral equations, such as the method-of-moments implementation of the magnetic-field integral equation, are frequently used to solve Maxwell's equations on the surfaces of electromagnetic scatterers. These electromagnetic surface integral equations yield many code-verification challenges due to the various sources of numerical error and their possible interactions. In this paper, we provide approaches to separately measure the numerical errors arising from these different error sources. We demonstrate the effectiveness of these approaches for cases with and without coding errors.

More Details
Results 3251–3300 of 99,299
Results 3251–3300 of 99,299