Publications

Results 5551–5600 of 99,299

Search results

Jump to search filters

94ND10 Intergranular Phase Analysis and Fabrication

Bishop, Sean R.; Boro, Joseph R.; Jauregui, Luis; Price, Patrick M.; Peretti, Amanda S.; Lowry, Daniel R.; Kammler, Daniel

The composition and phase fraction of the intergranular phase of 94ND10 ceramic is determined and fabricated ex situ. The fraction of each phase is 85.96 vol% Al2O3 bulk phase, 9.46 vol% Mg-rich intergranular phase, 4.36 vol% Ca/Si-rich intergranular phase, and 0.22 vol% voids. The Ca/Si-rich phase consists of 0.628 at% Mg, 12.59 at% Si, 10.24 at% Ca, 17.23 at% Al, and balance O. The Mgrich phase consists of 14.17 at% Mg, 0.066 at% Si, 0.047 at% Ca, 28.69 at% Al, and balance O. XRD of the ex situ intergranular material made by mixed oxides consisting of the above phase and element fractions yielded 92 vol% MgAl2O4 phase and 8 vol% CaAl2Si2O8 phase. The formation of MgAl2O4 phase is consistent with prior XRD of 94ND10, while the CaAl2Si2O8 phase may exist in 94ND10 but at a concentration not readily detected with XRD. The MgAl2O4 and CaAl2Si2O8 phases determined from XRD are expected to have the elemental compositions for the Mg-rich and Ca/Si-rich phases above by cation substitutions (e.g., some Mg substituted for by Ca in the Mg-rich phase) and impurity phases not detectable with XRD.

More Details

Energy Storage for Manufacturing and Industrial Decarbonization (Energy StorM)

Ho, Clifford K.; Rao, Prakash; Iloeje, Nwike; Marschilok, Amy; Liaw, Boryann; Kaur, Sumanjeet; Slaughter, Julie; Hertz, Kristin; Wendt, Lynn; Supekar, Sarang; Montes, Marisa

This report summarizes the needs, challenges, and opportunities associated with carbon-free energy and energy storage for manufacturing and industrial decarbonization. Energy needs and challenges for different manufacturing and industrial sectors (e.g., cement/steel production, chemicals, materials synthesis) are identified. Key issues for industry include the need for large, continuous on-site capacity (tens to hundreds of megawatts), compatibility with existing infrastructure, cost, and safety. Energy storage technologies that can potentially address these needs, which include electrochemical, thermal, and chemical energy storage, are presented along with key challenges, gaps, and integration issues. Analysis tools to value energy storage technologies in the context of manufacturing and industrial decarbonizations are also presented. Material is drawn from the Energy Storage for Manufacturing and Industrial Decarbonization (Energy StorM) Workshop, held February 8 - 9, 2022. The objective was to identify research opportunities and needs for the U.S. Department of Energy as part of its Energy Storage Grand Challenge program.

More Details

Low-synch Gram–Schmidt with delayed reorthogonalization for Krylov solvers

Parallel Computing

Bielich, Daniel; Langou, Julien; Thomas, Stephen; Swirydowicz, Kasia; Yamazaki, Ichitaro; Boman, Erik G.

The parallel strong-scaling of iterative methods is often determined by the number of global reductions at each iteration. Low-synch Gram–Schmidt algorithms are applied here to the Arnoldi algorithm to reduce the number of global reductions and therefore to improve the parallel strong-scaling of iterative solvers for nonsymmetric matrices such as the GMRES and the Krylov–Schur iterative methods. In the Arnoldi context, the QR factorization is “left-looking” and processes one column at a time. Among the methods for generating an orthogonal basis for the Arnoldi algorithm, the classical Gram–Schmidt algorithm, with reorthogonalization (CGS2) requires three global reductions per iteration. A new variant of CGS2 that requires only one reduction per iteration is presented and applied to the Arnoldi algorithm. Delayed CGS2 (DCGS2) employs the minimum number of global reductions per iteration (one) for a one-column at-a-time algorithm. The main idea behind the new algorithm is to group global reductions by rearranging the order of operations. DCGS2 must be carefully integrated into an Arnoldi expansion or a GMRES solver. Numerical stability experiments assess robustness for Krylov–Schur eigenvalue computations. Performance experiments on the ORNL Summit supercomputer then establish the superiority of DCGS2 over CGS2.

More Details

Evaluation of accuracy and convergence of numerical coupling approaches for poroelasticity benchmark problems

Geomechanics for Energy and the Environment

Warren, Maria; Foulk, James W.; Martinez, Mario J.; Kucala, Alec; Yoon, Hongkyu

Accurate modeling of subsurface flow and transport processes is vital as the prevalence of subsurface activities such as carbon sequestration, geothermal recovery, and nuclear waste disposal increases. Computational modeling of these problems leverages poroelasticity theory, which describes coupled fluid flow and mechanical deformation. Although fully coupled monolithic schemes are accurate for coupled problems, they can demand significant computational resources for large problems. In this work, a fixed stress scheme is implemented into the Sandia Sierra Multiphysics toolkit. Two implementation methods, along with the fully coupled method, are verified with one-dimensional (1D) Terzaghi, 2D Mandel, and 3D Cryer sphere benchmark problems. The impact of a range of material parameters and convergence tolerances on numerical accuracy and efficiency was evaluated. Overall the fixed stress schemes achieved acceptable numerical accuracy and efficiency compared to the fully coupled scheme. However, the accuracy of the fixed stress scheme tends to decrease with low permeable cases, requiring the finer tolerance to achieve a desired numerical accuracy. For the fully coupled scheme, high numerical accuracy was observed in most of cases except a low permeability case where an order of magnitude finer tolerance was required for accurate results. Finally, a two-layer Terzaghi problem and an injection–production well system were used to demonstrate the applicability of findings from the benchmark problems for more realistic conditions over a range of permeability. Simulation results suggest that the fixed stress scheme provides accurate solutions for all cases considered with the proper adjustment of the tolerance. This work clearly demonstrates the robustness of the fixed stress scheme for coupled poroelastic problems, while a cautious selection of numerical tolerance may be required under certain conditions with low permeable materials.

More Details

Inspecta Annual Technical Report

Smartt, Heidi A.; Coram, Jamie L.; Dorawa, Sydney; Foulk, James W.; Honnold, Philip; Kakish, Zahi; Pickett, Chris; Shoman, Nathan; Spence, Katherine

Sandia National Laboratories (SNL) is designing and developing an Artificial Intelligence (AI)-enabled smart digital assistant (SDA), Inspecta (International Nuclear Safeguards Personal Examination and Containment Tracking Assistant). The goal is to provide inspectors an in-field digital assistant that can perform tasks identified as tedious, challenging, or prone to human error. During 2021, we defined the requirements for Inspecta based on reviews of International Atomic Energy Agency (IAEA) publications and interviews with former IAEA inspectors. We then mapped the requirements to current commercial or open-source technical capabilities to provide a development path for an initial Inspecta prototype while highlighting potential research and development tasks. We selected a highimpact inspection task that could be performed by an early Inspecta prototype and are developing the initial architecture, including hardware platform. This paper describes the methodology for selecting an initial task scenario, the first set of Inspecta skills needed to assist with that task scenario and finally the design and development of Inspecta’s architecture and platform.

More Details

Stress Intensity Thresholds for Development of Reliable Brittle Materials

Rimsza, Jessica; Strong, Kevin T.; Buche, Michael R.; Jones, Reese E.; Nakakura, Craig Y.; Weyrauch, Noah; Brow, Richard; Duree, Jessica M.; Stephens, Kelly S.; Grutzik, S.J.

Brittle material failure in high consequence systems can appear random and unpredictable at subcritical stresses. Gaps in our understanding of how structural flaws and environmental factors (humidity, temperature) impact fracture propagation need to be addressed to circumvent this issue. A combined experimental and computational approach composed of molecular dynamics (MD) simulations, numerical modeling, and atomic force microscopy (AFM) has been undertaken to identify mechanisms of slow crack growth in silicate glasses. AFM characterization of crack growth as slow as 10-13 m/s was observed, with some stepwise crack growth. MD simulations have identified the critical role of inelastic relaxation in crack propagation, including evolution of the structure during relaxation. A numerical model for the existence of a stress intensity threshold, a stress intensity below which a fracture will not propagate, was developed. This transferrable model for predicting slow crack growth is being incorporated into mission-based programs.

More Details
Results 5551–5600 of 99,299
Results 5551–5600 of 99,299