Publications

Results 3901–3925 of 99,299

Search results

Jump to search filters

CARS in an Inductively Coupled Plasma Torch, Part 1: High Temperature Nitrogen Thermometry

AIAA SciTech Forum and Exposition, 2023

Fries, Dan; Stark, Spenser T.; Murray, John S.; Clemens, Noel; Varghese, Philip L.; Bhakta, Rajkumar B.; Jans, Elijah R.; Kearney, Sean P.

The current interest in hypersonic flows and the growing importance of plasma applications necessitate the development of diagnostics for high-enthalpy flow environments. Reliable and novel experimental data at relevant conditions will drive engineering and modeling efforts forward significantly. This study demonstrates the usage of nanosecond Coherent Anti-Stokes Raman Scattering (CARS) to measure temperature in an atmospheric, high-temperature (> 5500 K) air plasma. The experimental configuration is of interest as the plasma is close to thermodynamic equilibrium and the setup is a test-bed for heat shield materials. The determination of the non-resonant background at such high-temperatures is explored and rotational-vibrational equilibrium temperatures of the N2 ground state are determined via fits of the theory to measured spectra. Results show that the accuracy of the temperature measurements is affected by slow periodic variations in the plasma, causing sampling error. Moreover, depending on the experimental configuration, the measurements can be affected by two-beam interaction, which causes a bias towards lower temperatures, and stimulated Raman pumping, which causes a bias towards higher temperatures. The successful demonstration of CARS at the present conditions, and the exploration of its sensitivities, paves the way towards more complex measurements, e.g. close to interfaces in high-enthalpy plasma flows.

More Details

Microgrid Tiered Circuits Effects for a Planned Housing Community in Puerto Rico

ASHRAE Transactions

Villa, Daniel L.; Quiroz, Jimmy E.; O'Neill-Carrillo, Efrain; Jeffers, Robert

Puerto Rico faced a double strike from hurricanes Irma and Maria in 2017. The resulting damage required a comprehensive rebuild of electric infrastructure. There are plans and pilot projects to rebuild with microgrids to increase resilience. This paper provides a techno-economic analysis technique and case study of a potential future community in Puerto Rico that combines probabilistic microgrid design analysis with tiered circuits in building energy modeling. Tiered circuits in buildings allow electric load reduction via remote disconnection of non-critiñl circuits during an emergency. When coupled to a microgrid, tiered circuitry can reduce the chances of a microgrid's storage and generation resources being depleted. The analysis technique is applied to show 1) Approximate cost savings due to a tiered circuit structure and 2) Approximate cost savings gained by simultaneously considering resilience and sustainability constraints in the microgrid optimization. The analysis technique uses a resistive capacitive thermal model with load profiles for four tiers (tier 1-3 and non-critical loads). Three analyses were conducted using: 1) open-source software called Tiered Energy in Buildings and 2) the Microgrid Design Toolkit. For a fossil fuel based microgrid 30% of the total microgrid costs of 1.18 million USD were calculated where the non-tiered case keeps all loads 99.9% available and the tiered case keeps tier 1 at 99.9%, tier 2 at 95%, tier 3 at 80% availability, with no requirement on non-critical loads. The same comparison for a sustainable microgrid showed 8% cost savings on a 5.10 million USD microgrid due to tiered circuits. The results also showed 6-7% cost savings when our analysis technique optimizes sustainability and resilience simultaneously in comparison to doing microgrid resilience analysis and renewables net present value analysis independently. Though highly specific to our case study, similar assessments using our analysis technique can elucidate value of tiered circuits and simultaneous consideration of sustainability and resilience in other locations.

More Details

ULTRA-HIGH-G BALLISTIC IMPACT INTO WATER TARGETS

Proceedings of the 16th Hypervelocity Impact Symposium, HVIS 2022

Wilson, Natasha; White, Caleb; Chen, Alex; Curtis, Shane; Lifke, Donald

Creation of a Sandia internally developed, shock-hardened Recoverable Data Recorder (RDR) necessitated experimentation by ballistically-firing the device into water targets at velocities up to 5,000 ft/s. The resultant mechanical environments were very severe—routinely achieving peak accelerations in excess of 200 kG and changes in pseudo-velocity greater than 38,000 inch/s. High-quality projectile deceleration datasets were obtained though high-speed imaging during the impact events. The datasets were then used to calibrate and validate computational models in both CTH and EPIC. Hydrodynamic stability in these environments was confirmed to differ from aerodynamic stability; projectile stability is maintained through a phenomenon known as “tail-slapping” or impingement of the rear of the projectile on the cavitation vapor-water interface which envelopes the projectile. As the projectile slows the predominate forces undergo a transition which is outside the codes’ capabilities to calculate accurately, however, CTH and EPIC both predict the projectile trajectory well in the initial hypervelocity regime. Stable projectile designs and the achievable acceleration space are explored through a large parameter sweep of CTH simulations. Front face chamfer angle has the largest influence on stability with low angles being more stable.

More Details

Clear-Sky Detection Using Time-Averaged, Tilted-Plane Data

Conference Record of the IEEE Photovoltaic Specialists Conference

Hansen, Clifford; Jordan, Dirk C.

A method is presented to detect clear-sky periods for plane-of-array, time-averaged irradiance data that is based on the algorithm originally described by Reno and Hansen. We show this new method improves the state-of-the-art by providing accurate detection at longer data intervals, and by detecting clear periods in plane-of-array data, which is novel. We illustrate how accurate determination of clear-sky conditions helps to eliminate data noise and bias in the assessment of long-term performance of PV plants.

More Details

Benchmark Tests for IV Fitting Algorithms

Conference Record of the IEEE Photovoltaic Specialists Conference

Hansen, Clifford; Jones, Abigail R.; Transue, Taos; Theristis, Marios

We propose a set of benchmark tests for current-voltage (IV) curve fitting algorithms. Benchmark tests enable transparent and repeatable comparisons among algorithms, allowing for measuring algorithm improvement over time. An absence of such tests contributes to the proliferation of fitting methods and inhibits achieving consensus on best practices. Benchmarks include simulated curves with known parameter solutions, with and without simulated measurement error. We implement the reference tests on an automated scoring platform and invite algorithm submissions in an open competition for accurate and performant algorithms.

More Details

Wake interactions behind individual-tower multi-rotor wind turbine configurations

Journal of Physics: Conference Series

Brown, Kenneth A.; Cheung, Lawrence; Foulk, James W.; Maniaci, David C.; Hamilton, W.

Multiple rotors on single structures have long been proposed to increase wind turbine energy capture with no increase in rotor size, but at the cost of additional mechanical complexity in the yaw and tower designs. Standard turbines on their own very-closely-spaced towers avoid these disadvantages but create a significant disadvantage; for some wind directions the wake turbulence of a rotor enters the swept area of a very close downwind rotor causing low output, fatigue stress, and changes in wake recovery. Knowing how the performance of pairs of closely spaced rotors varies with wind direction is essential to design a layout that maximizes the useful directions and minimizes the losses and stress at other directions. In the current work, the high-fidelity large-eddy simulation (LES) code Exa-Wind/Nalu-Wind is used to simulate the wake interactions from paired-rotor configurations in a neutrally stratified atmospheric boundary layer to investigate performance and feasibility. Each rotor pair consists of two Vestas V27 turbines with hub-to-hub separation distances of 1.5 rotor diameters. The on-design wind direction results are consistent with previous literature. For an off-design wind direction of 26.6°, results indicate little change in power and far-wake recovery relative to the on-design case. At a direction of 45.0°, significant rotor-wake interactions produce an increase in power but also in far-wake velocity deficit and turbulence intensity. A severely off-design case is also considered.

More Details

Investigations of Vacuum Insulator Flashover in Pulsed Power Systems

Proceedings - International Symposium on Discharges and Electrical Insulation in Vacuum, ISDEIV

Hopkins, Matthew M.; Brooks, William; Clark, Raimi; Echo, Zakari S.; Goeke, Ronald S.; Moore, Christopher H.; Mounho, Michael; Neuber, Andreas; Stephens, Jacob; Young, Jacob

This presentation describes a new effort to better understand insulator flashover in high current, high voltage pulsed power systems. Both experimental and modeling investigations are described. Particular emphasis is put upon understand flashover that initiate in the anode triple junction (anode-vacuum-dielectric).

More Details

Microgrid Sizing for Critical Infrastructure Considering Black-Sky Conditions & Grid Outages

IEEE Power and Energy Society General Meeting

Newlun, Cody J.; Clark, Waylon T.; Wilcox, Timothy F.

Extreme meteorological events, such as hurricanes and floods, cause significant infrastructure damage and, as a result, prolonged grid outages. To mitigate the negative effect of these outages and enhance the resilience of communities, microgrids consisting of solar photovoltaics (PV), energy storage (ES) technologies, and backup diesel generation are being considered. Furthermore, it is necessary to take into account how the extreme event affects the systems' performance during the outage, often referred to as black-sky conditions. In this paper, an optimization model is introduced to properly size ES and PV technologies to meet various duration of grid outages for selected critical infrastructure while considering black-sky conditions. A case study of the municipality of Villalba, Puerto Rico is presented to identify the several potential microgrid configurations that increase the community's resilience. Sensitivity analyses are performed around the grid outage durations and black-sky conditions to better decide what factors should be considered when scoping potential microgrids for community resilience.

More Details

Mycosynthesis of Zinc Oxide Nanoparticles Exhibits Fungal Species Dependent Morphological Preference

Small

Bachand, George D.; Brady, Nathan G.; O'Leary, Shamus L.; Moormann, Garrett M.; Watt, John D.; Singh, Manish K.

Filamentous fungi can synthesize a variety of nanoparticles (NPs), a process referred to as mycosynthesis that requires little energy input, do not require the use of harsh chemicals, occurs at near neutral pH, and do not produce toxic byproducts. While NP synthesis involves reactions between metal ions and exudates produced by the fungi, the chemical and biochemical parameters underlying this process remain poorly understood. Here, the role of fungal species and precursor salt on the mycosynthesis of zinc oxide (ZnO) NPs is investigated. This data demonstrates that all five fungal species tested are able to produce ZnO structures that can be morphologically classified into i) well-defined NPs, ii) coalesced/dissolving NPs, and iii) micron-sized square plates. Further, species-dependent preferences for these morphologies are observed, suggesting potential differences in the profile or concentration of the biochemical constituents in their individual exudates. This data also demonstrates that mycosynthesis of ZnO NPs is independent of the anion species, with nitrate, sulfate, and chloride showing no effect on NP production. Finally, these results enhance the understanding of factors controlling the mycosynthesis of ceramic NPs, supporting future studies that can enable control over the physical and chemical properties of NPs formed through this “green” synthesis method.

More Details

Lifetime-based Phosphor Thermometry via X-ray Excitation

AIAA SciTech Forum and Exposition, 2023

Westphal, Eric R.; Hansen, Linda E.; Foulk, James W.; Son, Steven F.; Meyer, Terrence R.; Winters, C.

Phosphor thermometry has become an established remote sensing technique for acquiring the temperature of surfaces and gas-phase flows. Often, phosphors are excited by a light source (typically emitting in the UV region), and their temperature-sensitive emission is captured. Temperature can be inferred from shifts in the emission spectra or the radiative decay lifetime during relaxation. While recent work has shown that the emission of several phosphors remains thermographic during x-ray excitation, the radiative decay lifetime was not investigated. The focus of the present study is to characterize the lifetime decay of the phosphor Gd2O2S:Tb for temperature sensitivity after excitation from a pulsed x-ray source. These results are compared to the lifetime decays found for this phosphor when excited using a pulsed UV laser. Results show that the lifetime of this phosphor exhibits comparable sensitivity to temperature between both excitation sources for a temperature range between 21 °C to 140 °C in increments of 20 °C. This work introduces a novel method of thermometry for researchers to implement when employing x-rays for diagnostics.

More Details

System Integration for Grid-scale Hybrid Battery Technologies

Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC

Dutta, Oindrilla; Mueller, Jacob A.; Wauneka, Robert; De Angelis, Valerio

In this work, a modular and open-source platform has been developed for integrating hybrid battery energy storage systems that are intended for grid applications. Alongside integration, this platform will facilitate testing and optimal operation of hybrid storage technologies. Here, a hardware testbed and a control software have been designed, where the former comprises commercial Lithium-iron-phosphate (LiFePO4) and Lead Acid (Pb - acid) cells, custom built Dual Active Bridge (DAB) DC-DC converters, and a commercial DC-AC conversion system. In this testbed the batteries have an operating voltage range of 11-15V, the DC-AC conversion stage has a DC link voltage of 24V, and it connects to a 208V3-φ grid. The hardware testbed can be scaled up to higher voltages. The control software is developed in Python, and the firmware for all the hardware components is developed in C. This software implements hybrid charge/discharge protocols that are suitable for each battery technology for preventing cell degradation, and perform uninter-rupted quality checks on selected battery packs. The developed platform provides flexibility, modularity, safety and economic benefits to utility-scale storage integration.

More Details

Improving Bayesian networks multifidelity surrogate construction with basis adaptation

AIAA SciTech Forum and Exposition, 2023

Zeng, Xiaoshu; Geraci, Gianluca; Gorodetsky, Alex A.; Jakeman, John D.; Eldred, Michael; Ghanem, Roger

Surrogate construction is an essential component for all non-deterministic analyses in science and engineering. The efficient construction of easy and cheaper-to-run alternatives to a computationally expensive code paves the way for outer loop workflows for forward and inverse uncertainty quantification and optimization. Unfortunately, the accurate construction of a surrogate still remains a task that often requires a prohibitive number of computations, making the approach unattainable for large-scale and high-fidelity applications. Multifidelity approaches offer the possibility to lower the computational expense requirement on the highfidelity code by fusing data from additional sources. In this context, we have demonstrated that multifidelity Bayesian Networks (MFNets) can efficiently fuse information derived from models with an underlying complex dependency structure. In this contribution, we expand on our previous work by adopting a basis adaptation procedure for the selection of the linear model representing each data source. Our numerical results demonstrate that this procedure is computationally advantageous because it can maximize the use of limited data to learn and exploit the important structures shared among models. Two examples are considered to demonstrate the benefits of the proposed approach: an analytical problem and a nuclear fuel finite element assembly. From these two applications, a lower dependency of MFnets on the model graph has been also observed.

More Details

Quantum circuit debugging and sensitivity analysis via local inversions

Quantum

Calderon Vargas, Fernando A.; Proctor, Timothy J.; Rudinger, Kenneth M.; Sarovar, Mohan

As the width and depth of quantum circuits implemented by state-of-the-art quantum processors rapidly increase, circuit analysis and assessment via classical simulation are becoming unfeasible. It is crucial, therefore, to develop new methods to identify significant error sources in large and complex quantum circuits. In this work, we present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most and thus helps to identify the most significant sources of error. The technique requires no classical verification of the circuit output and is thus a scalable tool for debugging large quantum programs in the form of circuits. We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.

More Details

Increasing DER Hosting Capacity in Meshed Low-Voltage Grids with Modified Network Protector Relay Settings

2023 IEEE PES Innovative Smart Grid Technologies Latin America, ISGT-LA 2023

Azzolini, Joseph A.; Reno, Matthew J.; Ropp, Michael E.; Cheng, Zheyuan; Udren, Eric; Holbach, Juergen

Due to their increased levels of reliability, meshed low-voltage (LV) grid and spot networks are common topologies for supplying power to dense urban areas and critical customers. Protection schemes for LV networks often use highly sensitive reverse current trip settings to detect faults in the medium-voltage system. As a result, interconnecting even low levels of distributed energy resources (DERs) can impact the reliability of the protection system and cause nuisance tripping. This work analyzes the possibility of modifying the reverse current relay trip settings to increase the DER hosting capacity of LV networks without impacting fault detection performance. The results suggest that adjusting relay settings can significantly increase DER hosting capacity on LV networks without adverse effects, and that existing guidance on connecting DERs to secondary networks, such as that contained in IEEE Std 1547-2018, could potentially be modified to allow higher DER deployment levels.

More Details

AN EFFICIENT GRADED APPROACH FOR THE DESIGN OF SECURE INSTRUMENTATION AND CONTROL SYSTEMS

International Conference on Nuclear Engineering, Proceedings, ICONE

Maccarone, Lee; James, Jacob; Sandoval, Daniel R.; Haddad, Alexandria; Clark, Andrew J.; Rowland, Mike

Prescriptive approaches for the cybersecurity of digital nuclear instrumentation and control (I&C) systems can be cumbersome and costly. These considerations are of particular concern for advanced reactors that implement digital technologies for monitoring, diagnostics, and control. A risk-informed performance-based approach is needed to enable the efficient design of secure digital I&C systems for nuclear power plants. This paper presents a tiered cybersecurity analysis (TCA) methodology as a graded approach for cybersecurity design. The TCA is a sequence of analyses that align with the plant, system, and component stages of design. Earlier application of the TCA in the design process provides greater opportunity for an efficient graded approach and defense-in-depth. The TCA consists of three tiers. Tier 1 is design and impact analysis. In Tier 1 it is assumed that the adversary has control over all digital systems, components, and networks in the plant, and that the adversary is only constrained by the physical limitations of the plant design. The plant's safety design features are examined to determine whether the consequences of an attack by this cyber-enabled adversary are eliminated or mitigated. Accident sequences that are not eliminated or mitigated by security by design features are examined in Tier 2 analysis. In Tier 2, adversary access pathways are identified for the unmitigated accident sequences, and passive measures are implemented to deny system and network access to those pathways wherever feasible. Any systems with remaining susceptible access pathways are then examined in Tier 3. In Tier 3, active defensive cybersecurity architecture features and cybersecurity plan controls are applied to deny the adversary the ability to conduct the tasks needed to cause a severe consequence. Tier 3 is not performed in this analysis because of the design maturity required for this tier of analysis.

More Details

Thermal-fluctuation effects on small-scale statistics in turbulent gas flow

Physics of Fluids

Mcmullen, Ryan M.; Torczynski, John R.; Gallis, Michael A.

Kolmogorov's theory of turbulence assumes that the small-scale turbulent structures in the energy cascade are universal and are determined by the energy dissipation rate and the kinematic viscosity alone. However, thermal fluctuations, absent from the continuum description, terminate the energy cascade near the Kolmogorov length scale. Here, we propose a simple superposition model to account for the effects of thermal fluctuations on small-scale turbulence statistics. For compressible Taylor-Green vortex flow, we demonstrate that the superposition model in conjunction with data from direct numerical simulation of the Navier-Stokes equations yields spectra and structure functions that agree with the corresponding quantities computed from the direct simulation Monte Carlo method of molecular gas dynamics, verifying the importance of thermal fluctuations in the dissipation range.

More Details

STABILITY ASSESSMENT OF HIGH TEMPERATURE COATINGS FOR FLUX MEASUREMENT APPLICATIONS

Proceedings of ASME 2023 17th International Conference on Energy Sustainability, ES 2023

Mclaughlin, Luke P.; Laubscher, Hendrik F.; Konings, Jorgen

This study investigated the durability of four high temperature coatings for use as a Gardon gauge foil coating. Failure modes and effects analysis have identified Gardon gauge foil coating as a critical component for the development of a robust flux gauge for high intensity flux measurements. Degradation of coating optical properties and physical condition alters flux gauge sensitivity, resulting in flux measurement errors. In this paper, four coatings were exposed to solar and thermal cycles to simulate real-world aging. Solar simulator and box furnace facilities at the National Solar Thermal Test Facility (NSTTF) were utilized in separate test campaigns. Coating absorptance and emissivity properties were measured and combined into a figure of merit (FOM) to characterize the optical property stability of each coating, and physical coating degradation was assessed qualitatively using microscope images. Results suggest rapid high temperature cycling did not significantly impact coating optical properties and physical state. In contrast, prolonged exposure of coatings to high temperatures degraded coating optical properties and physical state. Coatings degraded after 1 hour of exposure at temperatures above 400 °C and stabilized after 6-24 hours of exposure. It is concluded that the combination of high temperatures and prolonged exposure provide the energy necessary to sustain coating surface reactions and alter optical and physical coating properties. Results also suggest flux gauge foil coatings could benefit from long duration high temperature curing (>400 °C) prior to sensor calibration to stabilize coating properties and increase measurement reliability in high flux and high temperature applications.

More Details

Projection-based Reduced-Order Models with Hyperreduction for Finite Element Simulations of Thermal Protection Systems

AIAA Aviation and Aeronautics Forum and Exposition, AIAA AVIATION Forum 2023

Blonigan, Patrick J.; Tencer, John T.; Rizzi, Francesco

The design of thermal protection systems (TPS), including heat shields for reentry vehicles, rely more and more on computational simulation tools for design optimization and uncertainty quantification. Since high-fidelity simulations are computationally expensive for full vehicle geometries, analysts primarily use reduced-physics models instead. Recent work has shown that projection-based reduced-order models (ROMs) can provide accurate approximations of high-fidelity models at a lower computational cost. ROMs are preferable to alternative approximation approaches for high-consequence applications due to the presence of rigorous error bounds. The following paper extends our previous work on projection-based ROMs for ablative TPS by considering hyperreduction methods which yield further reductions in computational cost and demonstrating the approach for simulations of a three-dimensional flight vehicle. We compare the accuracy and potential performance of several different hyperreduction methods and mesh sampling strategies. This paper shows that with the correct implementation, hyperreduction can make ROMs up to 1-3 orders of magnitude faster than the full order model by evaluating the residual at only a small fraction of the mesh nodes.

More Details

Event-based sensing for the detection of modulated signals in degraded visual environments

Proceedings of SPIE the International Society for Optical Engineering

Pattyn, Christian A.; Edstrom, Alexander; Sanchez, Andres L.; Westlake, Karl; Vanderlaan, John D.; Tucker, J.D.; Jones, Jessica L.; Hagopian, Kaylin; Shank, Joshua; Casias, Lilian K.; Wright, Jeremy B.

Event-based sensors are a novel sensing technology which capture the dynamics of a scene via pixel-level change detection. This technology operates with high speed (>10 kHz), low latency (10 µs), low power consumption (<1 W), and high dynamic range (120 dB). Compared to conventional, frame-based architectures that consistently report data for each pixel at a given frame rate, event-based sensor pixels only report data if a change in pixel intensity occurred. This affords the possibility of dramatically reducing the data reported in bandwidth-limited environments (e.g., remote sensing) and thus, the data needed to be processed while still recovering significant events. Degraded visual environments, such as those generated by fog, often hinder situational awareness by decreasing optical resolution and transmission range via random scattering of light. To respond to this challenge, we present the deployment of an event-based sensor in a controlled, experimentally generated, well-characterized degraded visual environment (a fog analogue), for detection of a modulated signal and comparison of data collected from an event-based sensor and from a traditional framing sensor.

More Details

Gas-Phase Pressure and Temperature Measurements in a Cold-Flow Hypersonic Wind Tunnel via Femtosecond Coherent Anti-Stokes Raman Spectroscopy

AIAA SciTech Forum and Exposition, 2023

Richardson, Daniel; Retter, Jonathan E.; Kearney, Sean P.; Beresh, Steven J.

Measurements of gas-phase temperature and pressure in hypersonic flows are important for understanding gas-phase fluctuations which can drive dynamic loading on model surfaces and to study fundamental compressible flow turbulence. To achieve this capability, femtosecond coherent anti-Stokes Raman scattering (fs CARS) is applied in Sandia National Laboratories’ cold-flow hypersonic wind tunnel facility. Measurements were performed for tunnel freestream temperatures of 42–58 K and pressures of 1.5–2.2 Torr. The CARS measurement volume was translated in the flow direction during a 30-second tunnel run using a single computer-controlled translation stage. After broadband femtosecond laser excitation, the rotational Raman coherence was probed twice, once at an early time where the collisional environment has not affected the Raman coherence, and another at a later time after the collisional environment has led to significant dephasing of the Raman coherent. The gas-phase temperature was obtained primarily from the early-probe CARS spectra, while the gas-phase pressure was obtained primarily from the late-probe CARS spectra. Challenges in implementing fs CARS in this facility such as changes in the nonresonant spectrum at different measurement location are discussed.

More Details

Die-Embedded Glass Interposer with Minimum Warpage for 5G/6G Applications

Proceedings - Electronic Components and Technology Conference

Li, Xingchen; Jia, Xiaofan; Kim, Joon W.; Moon, Kyoung S.; Jordan, Matthew; Swaminathan, Madhavan

This paper presents a die-embedded glass interposer with minimum warpage for 5G/6G applications. The interposer performs high integration with low-loss interconnects by embedding multiple chips in the same glass substrate and interconnecting the chips through redistributive layers (RDL). Novel processes for cavity creation, multi-die embedding, carrier- less RDL build up and heat spreader attachment are proposed and demonstrated in this work. Performance of the interposer from 1 GHz to 110 GHz are evaluated. This work provides an advanced packaging solution for low-loss die-to-die and die-to-package interconnects, which is essential to high performance wireless system integration.

More Details

DevOps Pragmatic Practices and Potential Perils in Scientific Software Development

Lecture Notes in Networks and Systems

Milewicz, Reed M.; Bisila, Jonathan; Mundt, Miranda R.; Bernard, Sylvain R.; Buche, Michael R.; Gates, Jason M.; Grayson, Samuel A.; Harvey, Evan C.; Jaeger, Alexander; Landin, Kirk T.; Negus, Mitchell; Nicholson, Bethany L.

The DevOps movement, which aims to accelerate the continuous delivery of high-quality software, has taken a leading role in reshaping the software industry. Likewise, there is growing interest in applying DevOps tools and practices in the domains of computational science and engineering (CSE) to meet the ever-growing demand for scalable simulation and analysis. Translating insights from industry to research computing, however, remains an ongoing challenge; DevOps for science and engineering demands adaptation and innovation in those tools and practices. There is a need to better understand the challenges faced by DevOps practitioners in CSE contexts in bridging this divide. To that end, we conducted a participatory action research study to collect and analyze the experiences of DevOps practitioners at a major US national laboratory through the use of storytelling techniques. We share lessons learned and present opportunities for future investigation into DevOps practice in the CSE domain.

More Details

HAZARD ASSESSMENT OF FIRE CONSEQUENCES FROM A FUEL STORAGE EXPLOSION

Proceedings of the Thermal and Fluids Engineering Summer Conference

Brown, Alexander L.; Shurtz, Randy C.; Wilke, Jason

Two relatively under-reported facets of fuel storage fire safety are examined in this work for a 250, 000 gallon two-tank storage system. Ignition probability is linked to the radiative flux from a presumed fire. First, based on observed features of existing designs, fires are expected to be largely contained within a designed footprint that will hold the full spilled contents of the fuel. The influence of the walls and the shape of the tanks on the magnitude of the fire is not a well-described aspect of conventional fire safety assessment utilities. Various resources are herein used to explore the potential hazard for a contained fire of this nature. Second, an explosive attack on the fuel storage has not been widely considered in prior work. This work explores some options for assessing this hazard. The various methods for assessing the constrained conventional fires are found to be within a reasonable degree of agreement. This agreement contrasts with the hazard from an explosive dispersal. Best available assessment techniques are used, which highlight some inadequacies in the existing toolsets for making predictions of this nature. This analysis, using the best available tools, suggests the offset distance for the ignition hazard from a fireball will be on the same order as the offset distance for the blast damage. This suggests the buy-down of risk by considering the fireball is minimal when considering the blast hazards. Assessment tools for the fireball predictions are not particularly mature, and ways to improve them for a higher-fidelity estimate are noted.

More Details

THE ROLE OF INTERNAL VS EXTERNAL HYDROGEN ON FRACTURE RESISTANCE OF AUSTENITIC STAINLESS STEELS

American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP

Ronevich, Joseph; Balch, Dorian K.; San Marchi, Chris

Austenitic stainless steels are used in high-pressure hydrogen containment infrastructure for their resistance to hydrogen embrittlement. Applications for the use of austenitic stainless steels include pressure vessels, tubing, piping, valves, fittings and other piping components. Despite their resistance to brittle behavior in the presence of hydrogen, austenitic stainless steels can exhibit degraded fracture performance. The mechanisms of hydrogen-assisted fracture, however, remain elusive, which has motivated continued research on these alloys. There are two principal approaches to evaluate the influence of gaseous hydrogen on mechanical properties: internal and external hydrogen, respectively. The austenite phase has high solubility and low diffusivity of hydrogen at room temperature, which enables introduction of hydrogen into the material through thermal precharging at elevated temperature and pressure; a condition referred to as internal hydrogen. H-precharged material can subsequently be tested in ambient conditions. Alternatively, mechanical testing can be performed while test coupons are immersed in gaseous hydrogen thereby evaluating the effects of external hydrogen on property degradation. The slow diffusivity of hydrogen in austenite at room temperature can often be a limiting factor in external hydrogen tests and may not properly characterize lower bound fracture behavior in components exposed to hydrogen for long time periods. In this study, the differences between internal and external hydrogen environments are evaluated in the context of fracture resistance measurements. Fracture testing was performed on two different forged austenitic stainless steel alloys (304L and XM-11) in three different environments: 1) non-charged and tested in gaseous hydrogen at pressure of 1,000 bar (external H2), 2) hydrogen precharged and tested in air (internal H), 3) hydrogen precharged and tested in 1,000 bar H2 (internal H + external H2). For all environments, elastic-plastic fracture measurements were conducted to establish J-R curves following the methods of ASTM E1820. Following fracture testing, fracture surfaces were examined to reveal predominant fracture mechanisms for the different conditions and to characterize differences (and similarities) in the macroscale fracture processes associated with these environmental conditions.

More Details

2D-imaging of absolute OH and H2O2 profiles in a He-H2O nanosecond pulsed dielectric barrier discharge by photo-fragmentation laser-induced fluorescence

Plasma Sources Science and Technology

Van Den Bekerom, Dirk; Tahiyat, Malik M.; Huang, Erxiong; Frank, Jonathan H.; Farouk, Tanvir I.

Pulsed dielectric barrier discharges (DBD) in He-H2O and He-H2O-O2 mixtures are studied in near atmospheric conditions using temporally and spatially resolved quantitative 2D imaging of the hydroxyl radical (OH) and hydrogen peroxide (H2O2). The primary goal was to detect and quantify the production of these strongly oxidative species in water-laden helium discharges in a DBD jet configuration, which is of interest for biomedical applications such as disinfection of surfaces and treatment of biological samples. Hydroxyl profiles are obtained by laser-induced fluorescence (LIF) measurements using 282 nm laser excitation. Hydrogen peroxide profiles are measured by photo-fragmentation LIF (PF-LIF), which involves photo-dissociating H2O2 into OH with a 212.8 nm laser sheet and detecting the OH fragments by LIF. The H2O2 profiles are calibrated by measuring PF-LIF profiles in a reference mixture of He seeded with a known amount of H2O2. OH profiles are calibrated by measuring OH-radical decay times and comparing these with predictions from a chemical kinetics model. Two different burst discharge modes with five and ten pulses per burst are studied, both with a burst repetition rate of 50 Hz. In both cases, dynamics of OH and H2O2 distributions in the afterglow of the discharge are investigated. Gas temperatures determined from the OH-LIF spectra indicate that gas heating due to the plasma is insignificant. The addition of 5% O2 in the He admixture decreases the OH densities and increases the H2O2 densities. The increased coupled energy in the ten-pulse discharge increases OH and H2O2 mole fractions, except for the H2O2 in the He-H2O-O2 mixture which is relatively insensitive to the additional pulses.

More Details
Results 3901–3925 of 99,299
Results 3901–3925 of 99,299