Publications

5 Results

Search results

Jump to search filters

AN EFFICIENT GRADED APPROACH FOR THE DESIGN OF SECURE INSTRUMENTATION AND CONTROL SYSTEMS

International Conference on Nuclear Engineering, Proceedings, ICONE

Maccarone, Lee M.; James, Jacob J.; Sandoval, Daniel R.; Haddad, Alexandria H.; Clark, Andrew; Rowland, Michael T.

Prescriptive approaches for the cybersecurity of digital nuclear instrumentation and control (I&C) systems can be cumbersome and costly. These considerations are of particular concern for advanced reactors that implement digital technologies for monitoring, diagnostics, and control. A risk-informed performance-based approach is needed to enable the efficient design of secure digital I&C systems for nuclear power plants. This paper presents a tiered cybersecurity analysis (TCA) methodology as a graded approach for cybersecurity design. The TCA is a sequence of analyses that align with the plant, system, and component stages of design. Earlier application of the TCA in the design process provides greater opportunity for an efficient graded approach and defense-in-depth. The TCA consists of three tiers. Tier 1 is design and impact analysis. In Tier 1 it is assumed that the adversary has control over all digital systems, components, and networks in the plant, and that the adversary is only constrained by the physical limitations of the plant design. The plant's safety design features are examined to determine whether the consequences of an attack by this cyber-enabled adversary are eliminated or mitigated. Accident sequences that are not eliminated or mitigated by security by design features are examined in Tier 2 analysis. In Tier 2, adversary access pathways are identified for the unmitigated accident sequences, and passive measures are implemented to deny system and network access to those pathways wherever feasible. Any systems with remaining susceptible access pathways are then examined in Tier 3. In Tier 3, active defensive cybersecurity architecture features and cybersecurity plan controls are applied to deny the adversary the ability to conduct the tasks needed to cause a severe consequence. Tier 3 is not performed in this analysis because of the design maturity required for this tier of analysis.

More Details

Cyber-Physical Risks for Advanced Reactors

Fasano, Raymond E.; Lamb, Christopher L.; Hahn, Andrew S.; Haddad, Alexandria H.

Cybersecurity for industrial control systems is an important consideration that advance reactor designers will need to consider. How cyber risk is managed is the subject of on-going research and debate in the nuclear industry. This report seeks to identify potential cyber risks for advance reactors. Identified risks are divided into absorbed risk and licensee managed risk to clearly show how cyber risks for advance reactors can potentially be transferred. Absorbed risks are risks that originate external to the licensee but may unknowingly propagate into the plant. Insights include (1) the need for unification of safety, physical security, and cybersecurity risk assessment frameworks to ensure optimal coordination of risk, (2) a quantitative risk assessment methodology in conjunction with qualitative assessments may be useful in efficiently and sufficiently managing cyber risks, and (3) cyber risk management techniques should align with a risked informed regulatory framework for advance reactors.

More Details

Advance Reactor Operational Technology Architecture Categorization

Fasano, Raymond E.; Hahn, Andrew S.; Haddad, Alexandria H.; Lamb, Christopher L.

Seven generation III+ and generation IV nuclear reactor types, based on twelve reactor concepts surveyed, are examined using functional decomposition to extract relevant operational technology (OT) architecture information. This information is compared to existing nuclear power plants (NPPs) OT architectures to highlight novel and emergent cyber risks associated with next generation NPPs. These insights can help inform operational technology architecture requirements that will be unique to a given reactor type. Next generation NPPs have streamlined OT architectures relative to the current generation II commercial NPP fleet. Overall, without compensatory measures that provide sufficient and efficient cybersecurity controls, next generation NPPs will have increased cyber risk. Verification and validation of cyber-physical testbeds and cyber risk assessment methodologies may be an important next step to reduce cyber risk in the OT architecture design and testing phase. Coordination with safety requirements can result in OT architecture design being an iterative process.

More Details
5 Results
5 Results