Publications

7 Results

Search results

Jump to search filters

AN EFFICIENT GRADED APPROACH FOR THE DESIGN OF SECURE INSTRUMENTATION AND CONTROL SYSTEMS

International Conference on Nuclear Engineering, Proceedings, ICONE

Maccarone, Lee M.; James, Jacob J.; Sandoval, Daniel R.; Haddad, Alexandria H.; Clark, Andrew; Rowland, Michael T.

Prescriptive approaches for the cybersecurity of digital nuclear instrumentation and control (I&C) systems can be cumbersome and costly. These considerations are of particular concern for advanced reactors that implement digital technologies for monitoring, diagnostics, and control. A risk-informed performance-based approach is needed to enable the efficient design of secure digital I&C systems for nuclear power plants. This paper presents a tiered cybersecurity analysis (TCA) methodology as a graded approach for cybersecurity design. The TCA is a sequence of analyses that align with the plant, system, and component stages of design. Earlier application of the TCA in the design process provides greater opportunity for an efficient graded approach and defense-in-depth. The TCA consists of three tiers. Tier 1 is design and impact analysis. In Tier 1 it is assumed that the adversary has control over all digital systems, components, and networks in the plant, and that the adversary is only constrained by the physical limitations of the plant design. The plant's safety design features are examined to determine whether the consequences of an attack by this cyber-enabled adversary are eliminated or mitigated. Accident sequences that are not eliminated or mitigated by security by design features are examined in Tier 2 analysis. In Tier 2, adversary access pathways are identified for the unmitigated accident sequences, and passive measures are implemented to deny system and network access to those pathways wherever feasible. Any systems with remaining susceptible access pathways are then examined in Tier 3. In Tier 3, active defensive cybersecurity architecture features and cybersecurity plan controls are applied to deny the adversary the ability to conduct the tasks needed to cause a severe consequence. Tier 3 is not performed in this analysis because of the design maturity required for this tier of analysis.

More Details

Enhancing Power Plant Safety through Coupling Plant Simulators to Cyber Digital Architecture

Adams, Susan S.; Bruneau, Robert J.; Jacobs, Nicholas J.; Murchison, Nicole M.; Sandoval, Daniel R.; Seng, Bibiana E.

There are differences in how cyber-attack, sabotage, or discrete component failure mechanisms manifest within power plants and what these events would look like within the control room from an operator's perspective. This research focuses on understanding how a cyber event would affect the operation of the plant, how an operator would perceive the event, and if the operator's actions based on those perceptions will allow him/her to maintain plant safety. This research is funded as part of Sandia's Laboratory Directed Research and Development (LDRD) program to develop scenarios with cyber induced failure of plant systems coupled with a generic pressurized water reactor plant training simulator. The cyber scenario s w ere developed separately and injected into the simulator operational state to simulate an attack. These scenarios will determine if Nuclear Power Plant (NPP) operators can 1) recognize that the control room indicators were presenting incorrect or erroneous information and 2) take appropriate actions to keep the plant safe. This will also provide the opportunity to assess the operator cognitive workload during such events and identify where improvements might be made. This paper will review results of a pilot study run with NPP operators to investigate performance under various cyber scenarios. The discussion will provide an overview of the approach, scenario selection, metrics captured, resulting insights into operator actions and plant response to multiple scenarios of the NPP system.

More Details
7 Results
7 Results