Publications

Results 1–25 of 170

Search results

Jump to search filters

Optical and x-ray characterization of the Daedalus ultrafast x-ray imager

Review of Scientific Instruments

Looker, Quinn M.; Kimmel, Mark W.; Yang, Chi; Porter, John L.

The Daedalus ultrafast x-ray imager is the latest generation in Sandia’s hybrid CMOS detector family. With three frames along an identical line of sight, 1 ns minimum integration time, a higher full well than Icarus, and added features, Daedalus brings exciting new capabilities to diagnostic applications in inertial confinement fusion and high energy density science. In this work, we present measurements of time response, dynamic range, spatial uniformity, pixel cross-talk, and absolute x-ray sensitivity using pulsed optical and x-ray sources. We report a measured 1.5 Me− full well, pixel sensitivity at 9.58 × 10−7 V/e−, and an estimate of spatial uniformity at ∼5% across the sensor array.

More Details

Exploring the High-Pressure Phases of Carbon through X-ray Diffraction of Dynamic Compression Experiments on Sandia’s Z Pulsed Power Facility

Minerals

Ao, Tommy A.; Laros, James H.; Blada, Caroline B.; Brown, Nathan P.; Fulford, Karin W.; Gard, Paul D.; Geissel, Matthias G.; Hanshaw, Heath L.; Montoya, Michael M.; Payne, Sheri; Scoglietti, Edward; Smith, Anthony S.; Speas, Christopher S.; Porter, John L.; Seagle, Christopher T.

The carbon phase diagram is rich with polymorphs which possess very different physical and optical properties ideal for different scientific and engineering applications. An understanding of the dynamically driven phase transitions in carbon is particularly important for applications in inertial confinement fusion, as well as planetary and meteorite impact histories. Experiments on the Z Pulsed Power Facility at Sandia National Laboratories generate dynamically compressed high-pressure states of matter with exceptional uniformity, duration, and size that are ideal for investigations of fundamental material properties. X-ray diffraction (XRD) is an important material physics measurement because it enables direct observation of the strain and compression of the crystal lattice, and it enables the detection and identification of phase transitions. Several unique challenges of dynamic compression experiments on Z prevent using XRD systems typically utilized at other dynamic compression facilities, so novel XRD diagnostics have been designed and implemented. We performed experiments on Z to shock compress carbon (pyrolytic graphite) samples to pressures of 150–320 GPa. The Z-Beamlet Laser generated Mn-Heα (6.2 keV) X-rays to probe the shock-compressed carbon sample, and the new XRD diagnostics measured changes in the diffraction pattern as the carbon transformed into its high-pressure phases. Quantitative analysis of the dynamic XRD patterns in combination with continuum velocimetry information constrained the stability fields and melting of high-pressure carbon polymorphs.

More Details

Demonstration of improved laser preheat with a cryogenically cooled magnetized liner inertial fusion platform

Review of Scientific Instruments

Harvey-Thompson, Adam J.; Geissel, Matthias G.; Crabtree, Jerry A.; Weis, Matthew R.; Gomez, Matthew R.; Fein, Jeffrey R.; Laros, James H.; Ampleford, David A.; Awe, Thomas J.; Chandler, Gordon A.; Hansen, Stephanie B.; Jennings, Christopher A.; Knapp, Patrick K.; Kimmel, Mark W.; Mangan, Michael M.; Peterson, Kyle J.; Porter, John L.; Rochau, G.A.; Ruiz, Daniel E.; Hanson, Joseph C.; Harding, Eric H.; Perea, L.; Robertson, Grafton K.; Shores, Jonathon S.; Slutz, Stephen A.; Smith, G.E.; Speas, Christopher S.; Yager-Elorriaga, David A.; York, Adam Y.

We report on progress implementing and testing cryogenically cooled platforms for Magnetized Liner Inertial Fusion (MagLIF) experiments. Two cryogenically cooled experimental platforms were developed: an integrated platform fielded on the Z pulsed power generator that combines magnetization, laser preheat, and pulsed-power-driven fuel compression and a laser-only platform in a separate chamber that enables measurements of the laser preheat energy using shadowgraphy measurements. The laser-only experiments suggest that ∼89% ± 10% of the incident energy is coupled to the fuel in cooled targets across the energy range tested, significantly higher than previous warm experiments that achieved at most 67% coupling and in line with simulation predictions. The laser preheat configuration was applied to a cryogenically cooled integrated experiment that used a novel cryostat configuration that cooled the MagLIF liner from both ends. The integrated experiment, z3576, coupled 2.32 ± 0.25 kJ preheat energy to the fuel, the highest to-date, demonstrated excellent temperature control and nominal current delivery, and produced one of the highest pressure stagnations as determined by a Bayesian analysis of the data.

More Details

Helium as a Surrogate for Deuterium in LPI Studies

Laser and Particle Beams

Geissel, Matthias G.; Harvey-Thompson, Adam J.; Weis, Matthew R.; Fein, Jeffrey R.; Bliss, David E.; Kimmel, Mark W.; Shores, Jonathon S.; Smith, Ian C.; Jennings, Christopher A.; Porter, John L.; Rambo, Patrick K.; Ampleford, David A.; Hansen, Aaron

Helium or neopentane can be used as surrogate gas fill for deuterium (D2) or deuterium-tritium (DT) in laser-plasma interaction studies. Surrogates are convenient to avoid flammability hazards or the integration of cryogenics in an experiment. To test the degree of equivalency between deuterium and helium, experiments were conducted in the Pecos target chamber at Sandia National Laboratories. Observables such as laser propagation and signatures of laser-plasma instabilities (LPI) were recorded for multiple laser and target configurations. It was found that some observables can differ significantly despite the apparent similarity of the gases with respect to molecular charge and weight. While a qualitative behaviour of the interaction may very well be studied by finding a suitable compromise of laser absorption, electron density, and LPI cross sections, a quantitative investigation of expected values for deuterium fills at high laser intensities is not likely to succeed with surrogate gases.

More Details

Maximization of Laser Coupling with Cryogenic Targets

Geissel, Matthias G.; Hansen, Aaron; Harvey-Thompson, Adam J.; Weis, Matthew R.; Crabtree, Jerry A.; Ampleford, David A.; Beckwith, Kristian B.; Fein, Jeffrey R.; Gomez, Matthew R.; Hanson, Joseph C.; Jennings, Christopher A.; Kimmel, Mark W.; Maurer, A.; Rambo, Patrick K.; Shores, Jonathon S.; Smith, Ian C.; Speas, Robert J.; Speas, Christopher S.; Porter, John L.

Abstract not provided.

The ultrafast pixel array camera system and its applications in high energy density physics

Review of Scientific Instruments

Looker, Quinn M.; Oberla, Eric J.; Stahoviak, John W.; Mostafanezhad, Isar; Pang, Ryan; Luck, Marcus; Galloway, Benjamin R.; Rambo, Patrick K.; Porter, John L.

Diagnostics in high energy density physics, shock physics, and related fields are primarily driven by a need to record rapidly time-evolving signals in single-shot events. These measurements are often limited by channel count and signal degradation issues on cable links between the detector and digitizer. We present the Ultrafast Pixel Array Camera (UPAC), a compact and flexible detector readout system with 32 waveform-recording channels at up to 10 Gsample/s and 1.8 GHz analog bandwidth. The compact footprint allows the UPAC to be directly embedded in the detector environment. A key enabling technology is the PSEC4A chip, an eight-channel switch-capacitor array sampling device with up to 1056 samples/channel. The UPAC system includes a high-density input connector that can plug directly into an application-specific detector board, programmable control, and serial readout, with less than 5 W of power consumption in full operation. We present the UPAC design and characterization, including a measured timing resolution of ∼20 ps or better on acquisitions of sub-nanosecond pulses with minimal system calibrations. Example applications of the UPAC are also shown to demonstrate operation of a solid-state streak camera, an ultrafast imaging array, and a neutron time-of-flight spectrometer.

More Details

A study of sacrificial mirrors for use prior to a laser wakefield accelerator driven by the Z-Petawatt laser

Galloway, Benjamin R.; Rambo, Patrick K.; Geissel, Matthias G.; Kimmel, Mark W.; Kellogg, Jeffrey W.; Elle, Jennifer; Garrett, Travis; Porter, John L.; Rochau, G.A.

Many experiments at Sandia’s Z Pulsed Power Facility require x-ray backlighting diagnostics to understand experiment performance. Due to limitations in present-day source/detection modalities, most x-ray diagnostics at Z are restricted to photon energies <20 keV, ultimately limiting the density, amount, and atomic number of targets diagnosable in experiments. These limitations force the use of low-Z materials like Beryllium, and they prevent acquisition of important backlighting data for materials/densities that are opaque to soft x-rays and where background emission from the Z load and transmission lines overwhelm diagnostics. In this LDRD project, we have investigated the design and development of a laser wakefield acceleration platform driven by the Z-Petawatt laser – a platform that would enable the generation of a pulsed, collimated beam of high energy x-rays up to 100 keV. Geometrical considerations for implementation on the Z Machine require the use of sacrificial mirrors, which have been tested in offline experiments in the Chama target chamber in building 983. Our results suggest the use of sacrificial mirrors would not necessarily inhibit the laser wakefield x-ray process, particularly with the benefits stemming from planned laser upgrades. These conclusions support the continuation of laser wakefield source research and the development of the necessary infrastructure to deliver the Z-Petawatt laser to the Z center section along the appropriate lines of sight. Ultimately, this new capability will provide unprecedented views through dense states of matter, enabling the use of previously incompatible target materials/designs, and uncovering a new set of observables accessible through diffraction and spectroscopy in the hard x-ray regime. These will amplify the data return on precious Z shots and enhance Sandia’s ability to investigate fundamental physics in support of national security.

More Details

An overview of magneto-inertial fusion on the Z Machine at Sandia National Laboratories

Nuclear Fusion

Yager-Elorriaga, David A.; Ruiz, Daniel E.; Slutz, Stephen A.; Harvey-Thompson, Adam J.; Jennings, Christopher A.; Weis, Matthew R.; Weisy; Awe, Thomas J.; Chandler, Gordon A.; Myers, Clayton E.; Fein, Jeffrey R.; Galloway, B.R.; Geissel, Matthias G.; Glinsky, Michael E.; Hansen, Stephanie B.; Harding, Eric H.; Lamppa, Derek C.; Laros, James H.; Rambo, Patrick K.; Robertson, Grafton K.; Savage, Mark E.; Shipley, Gabriel A.; Schwarz, Jens S.; Ampleford, David A.; Beckwith, Kristian B.; Peterson, Kyle J.; Porter, John L.; Rochau, G.A.

We present an overview of the magneto-inertial fusion (MIF) concept MagLIF (Magnetized Liner Inertial Fusion) pursued at Sandia National Laboratories and review some of the most prominent results since the initial experiments in 2013. In MagLIF, a centimeter-scale beryllium tube or "liner" is filled with a fusion fuel, axially pre-magnetized, laser pre-heated, and finally imploded using up to 20 MA from the Z machine. All of these elements are necessary to generate a thermonuclear plasma: laser preheating raises the initial temperature of the fuel, the electrical current implodes the liner and quasi-adiabatically compresses the fuel via the Lorentz force, and the axial magnetic field limits thermal conduction from the hot plasma to the cold liner walls during the implosion. MagLIF is the first MIF concept to demonstrate fusion relevant temperatures, significant fusion production (>10^13 primary DD neutron yield), and magnetic trapping of charged fusion particles. On a 60 MA next-generation pulsed-power machine, two-dimensional simulations suggest that MagLIF has the potential to generate multi-MJ yields with significant self-heating, a long-term goal of the US Stockpile Stewardship Program. At currents exceeding 65 MA, the high gains required for fusion energy could be achievable.

More Details

Magnetic field effects on laser energy deposition and filamentation in magneto-inertial fusion relevant plasmas

Physics of Plasmas

Lewis, S.M.; Weis, Matthew R.; Speas, Christopher S.; Kimmel, Mark W.; Bengtson, R.D.; Breizman, B.; Geissel, Matthias G.; Gomez, Matthew R.; Harvey-Thompson, Adam J.; Kellogg, Jeffrey W.; Long, Joel L.; Quevedo, H.J.; Rambo, Patrick K.; Riley, N.R.; Schwarz, Jens S.; Shores, Jonathon S.; Stahoviak, J.; Ampleford, David A.; Porter, John L.; Ditmire, T.; Looker, Quinn M.; Struve, Kenneth W.

We report on experimental measurements of how an externally imposed magnetic field affects plasma heating by kJ-class, nanosecond laser pulses. The experiments reported here took place in gas cells analogous to magnetized liner inertial fusion targets. We observed significant changes in laser propagation and energy deposition scale lengths when a 12T external magnetic field was imposed in the gas cell. We find evidence that the axial magnetic field reduces radial electron thermal transport, narrows the width of the heated plasma, and increases the axial plasma length. Reduced thermal conductivity increases radial thermal gradients. This enhances radial hydrodynamic expansion and subsequent thermal self-focusing. Our experiments and supporting 3D simulations in helium demonstrate that magnetization leads to higher thermal gradients, higher peak temperatures, more rapid blast wave development, and beam focusing with an applied field of 12T.

More Details

Z-Petawatt Laser Highlights for FY21

Rambo, Patrick K.; Galloway, B.R.; Geissel, Matthias G.; Kimmel, Mark W.; Porter, John L.

We’re happy to report that the full-aperture upgrade project, started in FY18, is now complete and short-pulse target experiments are underway. The table below lists the present performance level of ZPW. Additional laser improvements are in progress to increase the laser energy and pulse contrast along with implementing a correction for achromatic aberrations to reduce the focused spot size and pulse width.

More Details

Lasergate: A windowless gas target for enhanced laser preheat in magnetized liner inertial fusion

Physics of Plasmas

Galloway, B.R.; Slutz, Stephen A.; Kimmel, Mark W.; Rambo, Patrick K.; Schwarz, Jens S.; Geissel, Matthias G.; Harvey-Thompson, Adam J.; Weis, Matthew R.; Jennings, Christopher A.; Field, Ella S.; Kletecka, Damon E.; Looker, Quinn M.; Colombo, Anthony P.; Edens, Aaron E.; Smith, Ian C.; Shores, Jonathon S.; Speas, Christopher S.; Speas, Robert J.; Spann, A.P.; Sin, J.; Gautier, S.; Sauget, V.; Treadwell, P.A.; Rochau, G.A.; Porter, John L.

At the Z Facility at Sandia National Laboratories, the magnetized liner inertial fusion (MagLIF) program aims to study the inertial confinement fusion in deuterium-filled gas cells by implementing a three-step process on the fuel: premagnetization, laser preheat, and Z-pinch compression. In the laser preheat stage, the Z-Beamlet laser focuses through a thin polyimide window to enter the gas cell and heat the fusion fuel. However, it is known that the presence of the few μm thick window reduces the amount of laser energy that enters the gas and causes window material to mix into the fuel. These effects are detrimental to achieving fusion; therefore, a windowless target is desired. The Lasergate concept is designed to accomplish this by "cutting"the window and allowing the interior gas pressure to push the window material out of the beam path just before the heating laser arrives. In this work, we present the proof-of-principle experiments to evaluate a laser-cutting approach to Lasergate and explore the subsequent window and gas dynamics. Further, an experimental comparison of gas preheat with and without Lasergate gives clear indications of an energy deposition advantage using the Lasergate concept, as well as other observed and hypothesized benefits. While Lasergate was conceived with MagLIF in mind, the method is applicable to any laser or diagnostic application requiring direct line of sight to the interior of gas cell targets.

More Details

Lasergate: a windowless gas target for enhanced laser preheat in MagLIF

Galloway, B.R.; Slutz, Stephen A.; Kimmel, Mark W.; Rambo, Patrick K.; Schwarz, Jens S.; Geissel, Matthias G.; Harvey-Thompson, Adam J.; Weis, Matthew R.; Jennings, Christopher A.; Field, Ella S.; Kletecka, Damon E.; Looker, Quinn M.; Colombo, Anthony P.; Edens, Aaron E.; Smith, Ian C.; Shores, Jonathon S.; Speas, Christopher S.; Speas, Robert J.; Spann, Andrew; Sin, Justin; Gautier, Sophie; Sauget, Vincent; Treadwell, Paul; Rochau, G.A.; Porter, John L.

Abstract not provided.

Investigating the energy balance in MagLIF preheat experiments

Harvey-Thompson, Adam J.; Geissel, Matthias G.; Crabtree, Jerry A.; Ampleford, David A.; Awe, Thomas J.; Beckwith, Kristian B.; Fein, Jeffrey R.; Gomez, Matthew R.; Hanson, Joseph C.; Jennings, Christopher A.; Kimmel, Mark W.; Maurer, A.; Shores, Jonathon S.; Smith, Ian C.; Speas, Robert J.; Speas, Christopher S.; York, Adam Y.; Porter, John L.; Paguio, Reny; Smith, Gary

Abstract not provided.

Increased preheat energy to MagLIF targets with cryogenic cooling

Harvey-Thompson, Adam J.; Geissel, Matthias G.; Crabtree, Jerry A.; Weis, Matthew R.; Gomez, Matthew R.; Fein, Jeffrey R.; Ampleford, David A.; Awe, Thomas J.; Chandler, Gordon A.; Galloway, B.R.; Hansen, Stephanie B.; Hanson, Jeffrey J.; Harding, Eric H.; Jennings, Christopher A.; Kimmel, Mark W.; Knapp, Patrick K.; Lamppa, Derek C.; Laros, James H.; Mangan, Michael M.; Maurer, A.; Perea, L.; Peterson, Kara J.; Porter, John L.; Rambo, Patrick K.; Robertson, Grafton K.; Rochau, G.A.; Ruiz, Daniel E.; Shores, Jonathon S.; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher S.; Yager-Elorriaga, David A.; York, Adam Y.; Paguio, R.R.; Smith, G.E.

Abstract not provided.

Detector thickness effects on nanosecond-gated imager response

Review of Scientific Instruments

Looker, Quinn M.; Colombo, Anthony P.; Porter, John L.

Hybrid CMOS multi-frame imagers with exposure times down to ∼2 ns have made significant impacts in high energy density physics and inertial confinement fusion research. The detector thickness is a key parameter in both detector quantum efficiency and temporal response. The Icarus hybrid CMOS imager has been fabricated with Si detector thicknesses of 8, 25, and 100 μm. The temporal response of imaging sensors with exposure time down to 2 ns has been examined and compared to directly measured photodiode current. The 100-μm thick variant displays extended features related to charge carrier collection and is more susceptible to field collapse. We also demonstrate charge collection time effects on spatial response.

More Details
Results 1–25 of 170
Results 1–25 of 170