Publications

Results 1–25 of 286

Search results

Jump to search filters

DEPLOYABLE COLD ATOM INTERFEROMETRY SENSOR PLATFORMS BASED ON DIFFRACTIVE OPTICS AND INTEGRATED PHOTONICS

Lee, Jongmin L.; Biedermann, Grant; McGuinness, Hayden J.; Soh, Daniel B.; Christensen, Justin C.; Ding, Roger D.; Finnegan, Patrick S.; Hoth, Gregory A.; Kindel, Will; Little, Bethany J.; Rosenthal, Randy R.; Wendt, J.R.; Lentine, Anthony L.; Eichenfield, Matthew S.; Gehl, M.; Kodigala, Ashok; Siddiqui, Aleem M.; Skogen, Erik J.; Vawter, Gregory A.; Ison, Aaron M.; Bossert, David B.; Fuerschbach, Kyle H.; Gillund, Daniel P.; Walker, Charles A.; De Smet, Dennis J.; Brashar, Connor B.; Berg, Joseph B.; Jhaveri, Prabodh M.; Smith, Tony G.; Kemme, S.A.; Schwindt, Peter S.

Abstract not provided.

Near-Infrared Nanophotonics through Dynamic Control of Carrier Density in Conducting Ceramics

Wood, Michael G.; Campione, Salvatore; Luk, Ting S.; Wendt, J.R.; Shank, Joshua S.; Sanchez, Victoria S.; Serkland, Darwin K.

Major breakthroughs in silicon photonics often come from the integration of new materials into the platform, from bonding III-Vs for on-chip lasers to growth of Ge for high-speed photodiodes. This report describes the integration of transparent conducting oxides (TCOs) onto silicon waveguides to enable ultra-compact (<10 μm) electro-optical modulators. These modulators exploit the "epsilon-near-zero" effect in TCOs to create a strong light-matter interaction and allow for a significant reduction in footprint. Waveguide-integrated devices fabricated in the Sandia Microfab demonstrated gigahertz-speed operation of epsilon-near-zero based modulators for the first time. Numerical modeling of these devices matched well with theory and showed a path for significant improvements in device performance with high-carrier-mobility TCOs such as cadmium oxide. A cadmium oxide sputtering capability has been brought online at Sandia; integration of these high mobility films is the subject of future work to develop and mature this exciting class of Si photonics devices.

More Details

Topological Quantum Materials for Quantum Computation

Nenoff, T.M.; Chou, Stanley S.; Dickens, Peter D.; Modine, N.A.; Yu, Wenlong; Lee, Stephen R.; Sapkota, Keshab R.; Wang, George T.; Wendt, J.R.; Medlin, Douglas L.; Leonard, Francois L.; Pan, Wei P.

Recent years have seen an explosion in research efforts discovering and understanding novel electronic and optical properties of topological quantum materials (TQMs). In this LDRD, a synergistic effort of materials growth, characterization, electrical-magneto-optical measurements, combined with density functional theory and modeling has been established to address the unique properties of TQMs. Particularly, we have carried out extensive studies in search for Majorana fermions (MFs) in TQMs for topological quantum computation. Moreover, we have focused on three important science questions. 1) How can we controllably tune the properties of TQMs to make them suitable for quantum information applications? 2) What materials parameters are most important for successfully observing MFs in TQMs? 3) Can the physical properties of TQMs be tailored by topological band engineering? Results obtained in this LDRD not only deepen our current knowledge in fundamental quantum physics but also hold great promise for advanced electronic/photonic applications in information technologies.

More Details

Saturation Velocity Measurement of Al0.7Ga0.3N-Channel High Electron Mobility Transistors

Journal of Electronic Materials

Klein, Brianna A.; Baca, A.G.; Lepkowski, Stefan M.; Nordquist, Christopher N.; Wendt, J.R.; Allerman, A.A.; Armstrong, Andrew A.; Douglas, Erica A.; Abate, Vincent M.; Kaplar, Robert K.

Gate length dependent (80 nm–5000 mm) radio frequency measurements to extract saturation velocity are reported for Al0.85Ga0.15N/Al0.7Ga0.3N high electron mobility transistors fabricated into radio frequency devices using electron beam lithography. Direct current characterization revealed the threshold voltage shifting positively with increasing gate length, with devices changing from depletion mode to enhancement mode when the gate length was greater than or equal to 450 nm. Transconductance varied from 10 mS/mm to 25 mS/mm, with the 450 nm device having the highest values. Maximum drain current density was 268 mA/mm at 10 V gate bias. Scattering-parameter characterization revealed a maximum unity gain bandwidth (fT) of 28 GHz, achieved by the 80 nm gate length device. A saturation velocity value of 3.8 × 106 cm/s, or 35% of the maximum saturation velocity reported for GaN, was extracted from the fT measurements.

More Details

Quantum dots with split enhancement gate tunnel barrier control

Applied Physics Letters

Rochette, S.; Rudolph, Martin R.; Roy, A.M.; Curry, Matthew J.; Eyck, G.A.T.; Manginell, Ronald P.; Wendt, J.R.; Pluym, Tammy P.; Carr, Stephen M.; Ward, Daniel R.; Lilly, M.P.; Carroll, Malcolm

We introduce a silicon metal-oxide-semiconductor quantum dot architecture based on a single polysilicon gate stack. The elementary structure consists of two enhancement gates separated spatially by a gap, one gate forming a reservoir and the other a quantum dot. We demonstrate that, in three devices based on two different versions of this elementary structure, a wide range of tunnel rates is attainable while maintaining single-electron occupation. A characteristic change in the slope of the charge transitions as a function of the reservoir gate voltage, attributed to screening from charges in the reservoir, is observed in all devices and is expected to play a role in the sizable tuning orthogonality of the split enhancement gate structure. The all-silicon process is expected to minimize strain gradients from electrode thermal mismatch, while the single gate layer should avoid issues related to overlayers (e.g., additional dielectric charge noise) and help improve the yield. Finally, reservoir gate control of the tunnel barrier has implications for initialization, manipulation, and readout schemes in multi-quantum dot architectures.

More Details

RF Performance of Al0.85Ga0.15N/Al0.70Ga0.30N high electron mobility transistors with 80-nm Gates

IEEE Electron Device Letters

Baca, A.G.; Klein, Brianna A.; Wendt, J.R.; Lepkowski, Stefan M.; Nordquist, Christopher N.; Armstrong, Andrew A.; Allerman, A.A.; Douglas, Erica A.; Kaplar, Robert K.

Al-rich AlGaN-channel high electron mobility transistors with 80-nm long gates and 85% (70%) Al in the barrier (channel) were evaluated for RF performance. The dc characteristics include a maximum current of 160 mA/mm with a transconductance of 24 mS/mm, limited by source and drain contacts, and an on/off current ratio of 109. fT of 28.4 GHz and fMAX of 18.5 GHz were determined from small-signal S-parameter measurements. Output power density of 0.38 W/mm was realized at 3 GHz in a power sweep using on-wafer load pull techniques.

More Details

A silicon metal-oxide-semiconductor electron spin-orbit qubit

Nature Communications

Jock, Ryan M.; Jacobson, Noah T.; Harvey-Collard, Patrick; Mounce, Andrew M.; Srinivasa, Vanita S.; Ward, Daniel R.; Anderson, John M.; Manginell, Ronald P.; Wendt, J.R.; Rudolph, Martin R.; Pluym, Tammy P.; Laros, James H.; Baczewski, Andrew D.; Witzel, Wayne W.; Carroll, Malcolm

The silicon metal-oxide-semiconductor (MOS) material system is a technologically important implementation of spin-based quantum information processing. However, the MOS interface is imperfect leading to concerns about 1/f trap noise and variability in the electron g-factor due to spin-orbit (SO) effects. Here we advantageously use interface-SO coupling for a critical control axis in a double-quantum-dot singlet-triplet qubit. The magnetic fieldorientation dependence of the g-factors is consistent with Rashba and Dresselhaus interface-SO contributions. The resulting all-electrical, two-Axis control is also used to probe the MOS interface noise. The measured inhomogeneous dephasing time, T2m, of 1.6 ?s is consistent with 99.95% 28Si enrichment. Furthermore, when tuned to be sensitive to exchange fluctuations, a quasi-static charge noise detuning variance of 2 μeV is observed, competitive with low-noise reports in other semiconductor qubits. This work, therefore, demonstrates that the MOS interface inherently provides properties for two-Axis qubit control, while not increasing noise relative to other material choices.

More Details

A metasurface optical modulator using voltage-controlled population of quantum well states

Applied Physics Letters

Sarma, Raktim S.; Campione, Salvatore; Goldflam, Michael G.; Shank, Joshua S.; Noh, Jinhyun; Le, Loan T.; Lange, Michael D.; Ye, Peide D.; Wendt, J.R.; Ruiz, Isaac R.; Howell, Stephen W.; Sinclair, Michael B.; Wanke, Michael W.; Brener, Igal B.

The ability to control the light-matter interaction with an external stimulus is a very active area of research since it creates exciting new opportunities for designing optoelectronic devices. Recently, plasmonic metasurfaces have proven to be suitable candidates for achieving a strong light-matter interaction with various types of optical transitions, including intersubband transitions (ISTs) in semiconductor quantum wells (QWs). For voltage modulation of the light-matter interaction, plasmonic metasurfaces coupled to ISTs offer unique advantages since the parameters determining the strength of the interaction can be independently engineered. In this work, we report a proof-of-concept demonstration of a new approach to voltage-tune the coupling between ISTs in QWs and a plasmonic metasurface. In contrast to previous approaches, the IST strength is here modified via control of the electron populations in QWs located in the near field of the metasurface. By turning on and off the ISTs in the semiconductor QWs, we observe a modulation of the optical response of the IST coupled metasurface due to modulation of the coupled light-matter states. Because of the electrostatic design, our device exhibits an extremely low leakage current of ∼6 pA at a maximum operating bias of +1 V and therefore very low power dissipation. Our approach provides a new direction for designing voltage-tunable metasurface-based optical modulators.

More Details

Spectroscopy of Multielectrode Tunnel Barriers

Physical Review Applied

Carroll, Malcolm; Shirkhorshidian, Amir; Gamble, John K.; Maurer, Leon M.; Carr, Stephen M.; Dominguez, Jason J.; Ten Eyck, Gregory A.; Wendt, J.R.; Nielsen, Erik N.; Jacobson, Noah T.; Lilly, Michael L.

Despite their ubiquity in nanoscale electronic devices, the physics of tunnel barriers has not been developed to the extent necessary for the engineering of devices in the few-electron regime. This problem is of urgent interest, as this is the specific regime into which current extreme-scale electronics fall. Here, we propose theoretically and validate experimentally a compact model for multielectrode tunnel barriers, suitable for design-rules-based engineering of tunnel junctions in quantum devices. We perform transport spectroscopy at approximately T=4 K, extracting effective barrier heights and widths for a wide range of biases, using an efficient Landauer-Büttiker tunneling model to perform the analysis. We find that the barrier height shows several regimes of voltage dependence, either linear or approximately exponential. Effects on threshold, such as metal-insulator transition and lateral confinement, are included because they influence parameters that determine barrier height and width (e.g., the Fermi energy and local electric fields). We compare these results to semiclassical solutions of Poisson's equation and find them to agree qualitatively. Finally, this characterization technique is applied to an efficient lateral tunnel barrier design that does not require an electrode directly above the barrier region in order to estimate barrier heights and widths.

More Details

Low dissipation spectral filtering using a field-effect tunable III-V hybrid metasurface

Applied Physics Letters

Sarma, Raktim S.; Campione, Salvatore; Goldflam, Michael G.; Shank, Joshua S.; Noh, Jinhyun; Smith, Sean S.; Ye, Peide D.; Sinclair, Michael B.; Klem, John F.; Wendt, J.R.; Ruiz, Isaac R.; Howell, Stephen W.; Brener, Igal B.

Considering the power constrained scaling of silicon complementary metal-oxide-semiconductor technology, the use of high mobility III-V compound semiconductors such as In0.53Ga0.47As in conjunction with high-κ dielectrics is becoming a promising option for future n-type metal-oxide-semiconductor field-effect-transistors. Development of low dissipation field-effect tunable III-V based photonic devices integrated with high-κ dielectrics is therefore very appealing from a technological perspective. In this work, we present an experimental realization of a monolithically integrable, field-effect-tunable, III-V hybrid metasurface operating at long-wave-infrared spectral bands. Our device relies on strong light-matter coupling between epsilon-near-zero (ENZ) modes of an ultra-thin In0.53Ga0.47As layer and the dipole resonances of a complementary plasmonic metasurface. The tuning mechanism of our device is based on field-effect modulation, where we modulate the coupling between the ENZ mode and the metasurface by modifying the carrier density in the ENZ layer using an external bias voltage. Modulating the bias voltage between ±2 V, we deplete and accumulate carriers in the ENZ layer, which result in spectrally tuning the eigenfrequency of the upper polariton branch at 13 μm by 480 nm and modulating the reflectance by 15%, all with leakage current densities less than 1 μA/cm2. Our wavelength scalable approach demonstrates the possibility of designing on-chip voltage-tunable filters compatible with III-V based focal plane arrays at mid- and long-wave-infrared wavelengths.

More Details
Results 1–25 of 286
Results 1–25 of 286