Hybrid bonded silicon nitride thin-film lithium niobate (TFLN) Mach-Zehnder modulators (MZMs) at 1310 nm were designed with metal coplanar waveguide electrodes buried in the silicon-on-insulator (SOI) chip. The MZM devices showed greatly improved performance compared to earlier devices of a similar design, and similar performance to comparable MZM devices with gold electrodes made on top of the TFLN layer. Both devices achieve a 3-dB electro-optic bandwidth greater than 110 GHz and voltage-driven optical extinction ratios greater than 28 dB. Half-wave voltage-length products ( Vπ L) of 2.8 and 2.5 Vċ cm were measured for the 0.5 and 0.4 cm long buried metal and top gold electrode MZMs, respectively.
TFLN/silicon photonic modulators featuring active silicon photonic components are reported with a Vπ of 3.6 Vcm. This hybrid architecture utilizes the bottom of the buried oxide as the bonding surface which features minimum topology.
The extreme miniaturization of a cold-atom interferometer accelerometer requires the development of novel technologies and architectures for the interferometer subsystems. Here, we describe several component technologies and a laser system architecture to enable a path to such miniaturization. We developed a custom, compact titanium vacuum package containing a microfabricated grating chip for a tetrahedral grating magneto-optical trap (GMOT) using a single cooling beam. In addition, we designed a multi-channel photonic-integrated-circuit-compatible laser system implemented with a single seed laser and single sideband modulators in a time-multiplexed manner, reducing the number of optical channels connected to the sensor head. In a compact sensor head containing the vacuum package, sub-Doppler cooling in the GMOT produces 15 μK temperatures, and the GMOT can operate at a 20 Hz data rate. We validated the atomic coherence with Ramsey interferometry using microwave spectroscopy, then demonstrated a light-pulse atom interferometer in a gravimeter configuration for a 10 Hz measurement data rate and T = 0–4.5 ms interrogation time, resulting in Δg/g = 2.0 × 10−6. This work represents a significant step towards deployable cold-atom inertial sensors under large amplitude motional dynamics.
AVFOP 2019 - Avionics and Vehicle Fiber-Optics and Photonics Conference
Yang, Benjamin B.; Lovelace, Brandon; Wier, Brian R.; Campbell, Jacob; Bolding, Mark; Chan, Cheong W.; Vinson, J.G.; Muthuchamy, Tarun; Bhattacharjea, Rajib; Harris, T.R.; Davis, Kyle; Stark, Andrew; Ward, Christopher; Bottenfield, Christian; Ralph, Stephen E.; Gehl, M.; Kodigala, Ashok; Lentine, Anthony L.
A compact radio frequency (RF) photonic receiver consisting of several photonic integrated circuits (PIC) that performs channelization and simultaneously downconverts the signal is described. A technique is also presented to adjust the phase shifters of the arrayed waveguide grating channelizer without direct phase measurements.
We demonstrate the first silicon photonic single-sideband (SSB)modulator with dual-parallel Mach-Zehnder modulators (MZMs)operating near 1550 nm with a measured carrier suppression of 27 dB and at least 12 dB sideband suppression at 1 GHz.