Publications

Results 70501–70600 of 99,299

Search results

Jump to search filters

Lessons learned on benchmarking from the international human reliability analysis empirical study

10th International Conference on Probabilistic Safety Assessment and Management 2010, PSAM 2010

Boring, Ronald L.; Forester, John A.; Bye, Andreas; Dang, Vinh N.; Lois, Erasmia

The International Human Reliability Analysis (HRA) Empirical Study is a comparative benchmark of the prediction of HRA methods to the performance of nuclear power plant crews in a control room simulator. There are a number of unique aspects to the present study that distinguish it from previous HRA benchmarks, most notably the emphasis on a method-to-data comparison instead of a method-to-method comparison. This paper reviews seven lessons learned about HRA benchmarking from conducting the study: (1) the dual purposes of the study afforded by joining another HRA study; (2) the importance of comparing not only quantitative but also qualitative aspects of HRA; (3) consideration of both negative and positive drivers on crew performance; (4) a relatively large sample size of crews; (5) the use of multiple methods and scenarios to provide a well-rounded view of HRA performance; (6) the importance of clearly defined human failure events; and (7) the use of a common comparison language to "translate" the results of different HRA methods. These seven lessons learned highlight how the present study can serve as a useful template for future benchmarking studies.

More Details

Quantitative results of the HRA empirical study and the role of quantitative data in benchmarking

10th International Conference on Probabilistic Safety Assessment and Management 2010, PSAM 2010

Dang, Vinh N.; Massaiu, Salvatore; Bye, Andreas; Forester, John A.

In the International HRA Empirical Study, diverse Human Reliability Analysis (HRA) methods are assessed based on data from a dedicated simulator study, which examined the performance of licensed crews in nuclear power plant emergency scenarios. The HRA method assessments involve comparing the predictions obtained with the method with empirical reference data, in quantitative as well as qualitative terms. This paper discusses the assessment approach and criteria, the quantitative reference data, and the comparisons that use these data. Consistent with the expectations at the outset of the study, the statistical limitations of the data are a key issue. These limitations preclude concentrating solely on the failure counts defined by the Human Failure Event (HFE) success criteria and the failure probabilities based on these counts. In assessing quantitative predictive power, this study additionally uses a reference HFE difficulty (qualitative failure likelihood) ranking that accounts for qualitative observations in addition to the failure counts. Overall, the method assessment prioritizes qualitative comparisons, using the rich set of data collected on performance issues. Here, the quantitative predictions and data are used to determine the essential qualitative comparisons, demonstrating how quantitative and qualitative comparisons and criteria can be usefully combined in HRA method assessment.

More Details

Developing a new HRA quantification approach from best methods and practices

10th International Conference on Probabilistic Safety Assessment and Management 2010, PSAM 2010

Dang, Vinh N.; Forester, John A.; Mosleh, Ali

The Office of Nuclear Regulatory Research (RES) of the U.S. Nuclear Regulatory Commission is sponsoring work in response to a Staff Requirements Memorandum (SRM) directing an effort to establish a single human reliability analysis (HRA) method for the agency or guidance for the use of multiple methods. One motivation is the variability in Human Failure Event (HFE) probabilities estimated by different analysts and methods. This work considers that a reduction of the variability in the HRA quantification outputs must address three sources: differences in the scope and implementation of qualitative analysis, the qualitative output-quantitative input interface, and the diversity of algorithms for estimating failure probabilities from these inputs. Two companion papers (Mosleh et al. and Hendrickson et al.) describe a proposed qualitative analysis approach The development of the corresponding quantification approach considers a number of alternatives including a module-based hybrid method and a data-driven quantification scheme. This paper presents on-going work and the views of the contributors.

More Details

Modeling pressurization caused by thermal decomposition of highly charring foam in sealed containers

21st Annual Conference on Recent Advances in Flame Retardancy of Polymeric Materials 2010

Erickson, K.L.; Dodd, Amanda B.; Hogan Jr., Roy E.

Polymer foam encapsulants provide mechanical, electrical, and thermal isolation in engineered systems. In fire environments, foams, such as polyurethanes, can liquefy and flow during thermal decomposition, and evolved gases and vapors can cause pressurization and failure of sealed containers. Liquefaction and flow of decomposing foam can cause serious modeling issues in systems safety and hazard analyses. To mitigate the issues resulting from liquefaction and flow, a hybrid polyurethane-cyanate-ester-epoxy foam was developed that has mechanical properties similar to currently used polyurethane foams. The hybrid foam behaves predictably, does not liquefy, and forms 40-50 percent by weight uniform char during decomposition in nitrogen. The char forms predictably and is a relatively uniform "participating medium." A previous paper discussed the experimental and modeling approach developed to predict radiation and conduction heat transfer through decomposing hybrid foam in vented containers. This paper discusses application of a similar approach to the more difficult problem of predicting heat transfer, foam decomposition, and pressure growth in sealed containers. Model predictions are compared with results from radiant heat transfer experiments involving foam encapsulated objects in sealed containers. All model parameters were evaluated from independent laboratory-scale experiments such as TGA and DSC. The time dependent-pressure in the container and the timedependent temperature near the surface of a foam-encapsulated object agreed well with experimental data. © (2010) by BCC Research All rights reserved.

More Details

Performing cyber security analysis using a live, virtual, and constructive (LVC) testbed

Proceedings - IEEE Military Communications Conference MILCOM

Van Leeuwen, Brian P.; Urias, Vincent; Eldridge, John M.; Villamarin, Charles; Olsberg, Ron

Cyber security analysis tools are necessary to evaluate the security, reliability, and resilience of networked information systems against cyber attack. It is common practice in modern cyber security analysis to separately utilize real systems computers, routers, switches, firewalls, computer emulations (e.g., virtual machines) and simulation models to analyze the interplay between cyber threats and safeguards. In contrast, Sandia National Laboratories has developed new methods to combine these evaluation platforms into a cyber Live, Virtual, and Constructive (LVC) testbed. The combination of real, emulated, and simulated components enables the analysis of security features and components of a networked information system. When performing cyber security analysis on a target system, it is critical to represent realistically the subject security components in high fidelity. In some experiments, the security component may be the actual hardware and software with all the surrounding components represented in simulation or with surrogate devices. Sandia National Laboratories has developed a cyber LVC testbed that combines modeling and simulation capabilities with virtual machines and real devices to represent, in varying fidelity, secure networked information system architectures and devices. Using this capability, secure networked information system architectures can be represented in our testbed on a single computing platform. This provides an "experiment-in-a-box" capability. The result is rapidly produced, large scale, relatively low-cost, multi-fidelity representations of networked information systems. These representations enable analysts to quickly investigate cyber threats and test protection approaches and configurations.

More Details

Historical insights for the safe launch of radioactive materials

European Space Agency, (Special Publication) ESA SP

Wyss, Gregory D.; Polansky, Gary; Allahdadi, Firooz

The launch of nuclear materials requires special care to minimize the risk of adverse effects to human health and the environment. This paper describes the special sources of risk that are inherent to the launch of radioactive materials and provides insights into the analysis and control of these risks that have been gained through the experience of previous US launches. Historically, launch safety has been achieved by eliminating, to the greatest degree possible, the potential for energetic insults to affect the radioactive material. For those insults that cannot be precluded, designers minimize the likelihood, magnitude and duration of their interaction with the material. Finally, when a radioactive release cannot be precluded, designers limit the magnitude and spatial extent of its dispersal.

More Details

A comprehensive understanding of the efficacy of N-ring SEE hardening methodologies in SiGe HBTs

IEEE Transactions on Nuclear Science

Phillips, Stan D.; Moen, Kurt A.; Najafizadeh, Laleh; Diestelhorst, Ryan M.; Sutton, Akil K.; Cressler, John D.; Vizkelethy, Gyorgy; Dodd, Paul E.; Marshall, Paul W.

We investigate the efficacy of mitigating radiation-based single event effects (SEE) within circuits incorporating SiGe heterojunction bipolar transistors (HBTs) built with an N-Ring, a transistor-level layout-based radiation hardened by design (RHBD) technique. Previous work of single-device ion-beam induced charge collection (IBICC) studies has demonstrated significant reductions in peak collector charge collection and sensitive area for charge collection; however, few circuit studies using this technique have been performed. Transient studies performed with Sandia National Laboratory's (SNL) 36 MeV 16O microbeam on voltage references built with N-Ring SiGe HBTs have shown mixed results, with reductions in the number of large voltage disruptions in addition to new sensitive areas of low-level output voltage disturbances. Similar discrepancies between device-level IBICC results and circuit measurements are found for the case of digital shift registers implemented with N-Ring SiGe HBTs irradiated in a broadbeam environment at Texas A&M's Cyclotron Institute. The error cross-section curve of the N-Ring based register is found to be larger at larger ion LETs than the standard SiGe register, which is clearly counter-intuitive. We have worked to resolve the discrepancy between the measured circuit results and the device-level IBICC measurements, by re-measuring single-device N-Ring SiGe HBTs using a time-resolved ion beam induced charge (TRIBIC) set-up that allows direct capture of nodal transients. Coupling these measurements with full 3-D TCAD simulations provides complete insight into the origin of transient currents in an N-Ring SiGe HBT. The detailed structure of these transients and their bias dependencies are discussed, together with the ramifications for the design of space-borne analog and digital circuits using SiGe HBTs. © 2010 IEEE.

More Details

Finite element modeling of concentrating solar collectors for evaluation of gravity loads, bending, and optical characterization

ASME 2010 4th International Conference on Energy Sustainability, ES 2010

Christian, Josh; Ho, Clifford K.

Understanding the effects of gravity and wind loads on concentrating solar power (CSP) collectors is critical for performance calculations and developing more accurate alignment procedures and techniques. This paper presents a rigorous finite-element model of a parabolic trough collector that is used to determine the impact of gravity loads on bending and displacements of the mirror facets and support structure. The geometry of the LUZ LS-2 parabolic trough collector was modeled using SolidWorks, and gravity-induced loading and displacements were simulated in SolidWorks Simulation. The model of the trough collector was evaluated in two positions: the 90° position (mirrors facing upward) and the 0° position (mirrors facing horizontally). The slope errors of the mirror facet reflective surfaces were found by evaluating simulated angular displacements of node-connected segments along the mirror surface. The ideal (undeformed) shape of the mirror was compared to the shape of the deformed mirror after gravity loading. Also, slope errors were obtained by comparing the deformed shapes between the 90° and 0° positions. The slope errors resulting from comparison between the deformed vs. undeformed shape were as high as ∼2 mrad, depending on the location of the mirror facet on the collector. The slope errors resulting from a change in orientation of the trough from the 90° position to the 0° position with gravity loading were as high as ∼3 mrad, depending on the location of the facet. © 2010 by ASME.

More Details

Introducing the target-matrix paradigm for mesh optimization via node-movement

Proceedings of the 19th International Meshing Roundtable, IMR 2010

Knupp, Patrick K.

A general-purpose algorithm for mesh optimization via node-movement, known as the Target-Matrix Paradigm, is introduced. The algorithm is general purpose in that it can be applied to a wide variety of mesh and element types, and to various commonly recurring mesh optimization problems such as shape improvement, and to more unusual problems like boundary-layer preservation with sliver removal, high-order mesh improvement, and edge-length equalization. The algorithm can be considered to be a direct optimization method in which weights are automatically constructed to enable definitions of application-specific mesh quality. The high-level concepts of the paradigm have been implemented in the Mesquite mesh-improvement library, along with a number of concrete algorithms that address mesh quality issues such as those shown in the examples of the present paper. © 2010 Springer-Verlag Berlin Heidelberg.

More Details

Comparison of diesel spray combustion in different high-temperature, high-pressure facilities

SAE International Journal of Engines

Pickett, Lyle M.; Genzale, Caroline L.; Bruneaux, Gilles; Malbec, Louis M.; Hermant, Laurent; Christiansen, Caspar; Schramm, Jesper

Diesel spray experimentation at controlled high-temperature and high-pressure conditions is intended to provide a more fundamental understanding of diesel combustion than can be achieved in engine experiments. This level of understanding is needed to develop the high-fidelity multi-scale CFD models that will be used to optimize future engine designs. Several spray chamber facilities capable of high-temperature, high-pressure conditions typical of engine combustion have been developed, but because of the uniqueness of each facility, there are uncertainties about their operation. For this paper, we describe results from comparative studies using constant-volume vessels at Sandia National Laboratories and IFP. Targeting the same ambient gas conditions (900 K, 60 bar, 22.8 kg/m 3, 15% oxygen) and using the same injector specifications (common rail, 1500 bar, KS 1.5/86 nozzle, 0.090 mm orifice diameter, n-dodecane, 363 K), we describe detailed measurements of the temperature and pressure boundary conditions at each facility, followed by observations of spray penetration, ignition, and combustion using high-speed imaging. The spray diagnostics show reasonable similarity despite the challenges of providing matched boundary conditions at these unique facilities. Performing experiments at the same high-temperature, highpressure operating conditions is an objective of the Engine Combustion Network (), which seeks to leverage the research capabilities and advanced diagnostics of all participants in the ECN. Thus, in addition to the presentation of a comparative study, this paper demonstrates steps that are needed for other interested groups to participate in ECN spray research. We expect that this collaborative effort will generate a high-quality dataset to be used for advanced computational model development at engine conditions. © 2010 SAE International.

More Details

Qualitative human reliability analysis-informed insights on cask drops

10th International Conference on Probabilistic Safety Assessment and Management 2010, PSAM 2010

Brewer, Jeffrey D.; Hendrickson, Stacey M.; Boring, Ronald L.; Cooper, Susan E.

Human Reliability Analysis (HRA) methods have been developed primarily to provide information for use in probabilistic risk assessments analyzing nuclear power plant (NPP) operations. Despite this historical focus on the control room, there has been growing interest in applying HRA methods to other NPP activities such as dry cask storage operations (DCSOs) in which spent fuel is transferred into dry cask storage systems. This paper describes a successful application of aspects of the "A Technique for Human Event Analysis" (ATHEANA) HRA approach [1, 2] in performing qualitative HRA activities that generated insights on the potential for dropping a spent fuel cask during DCSOs. This paper provides a description of the process followed during the analysis, a description of the human failure event (HFE) scenario groupings, discussion of inferred human performance vulnerabilities, a detailed examination of one HFE scenario and illustrative approaches for avoiding or mitigating human performance vulnerabilities that may contribute to dropping a spent fuel cask.

More Details

Solar technical assistance provided to forest city military communities in hawaii for incorporation of 20-30 MW of solar energy generation to power family housing for US navy personnel

39th ASES National Solar Conference 2010, SOLAR 2010

Gupta, Vipin P.; Boudra, Will; Kuszmaul, Scott S.; Rosenthal, Andrew; Cisneros, Gaby; Merrigan, Tim; Miller, Ryan; Dominick, Jeff

In May 2007, Forest City Military Communities won a US Department of Energy Solar America Showcase Award. As part of this award, executives and staff from Forest City Military Communities worked side-by-side with a DOE technical assistance team to overcome technical obstacles encountered by this large-scale real estate developer and manager. This paper describes the solar technical assistance that was provided and the key solar experiences acquired by Forest City Military Communities over an 18 month period.

More Details

Summary of the total system performance assessment for the Yucca Mountain license application

10th International Conference on Probabilistic Safety Assessment and Management 2010, PSAM 2010

Hansen, Clifford W.; Knowles, Mary K.; Mackinnon, Robert J.; McNeish, Jerry A.; Sevougian, S.D.; Swift, Peter

The Department of Energy's 2008 Yucca Mountain Performance Assessment represents the culmination of more than two decades of analyses of post-closure repository performance in support of programmatic decision making for the proposed Yucca Mountain repository. The 2008 performance assessment summarizes the estimated long-term risks to the health and safety of the public resulting from disposal of spent nuclear fuel and high-level radioactive waste in the proposed Yucca Mountain repository. The standards at 10 CFR Part 63 request several numerical estimates quantifying performance of the repository over time. This paper summarizes the key quantitative results from the performance assessment and presents uncertainty and sensitivity analyses for these results.

More Details

Design of a 1-D combline leaky-wave antenna with the open-stopband suppressed

Proceedings - 2010 12th International Conference on Electromagnetics in Advanced Applications, ICEAA'10

Williams, Jeffery T.; Paulotto, Simone; Baccarelli, Paolo; Jackson, David R.

We discuss and verify experimentally the design of a 1-D planar periodic combline leaky-wave antenna that avoids the open-stopband effects as the beam is scanned through broadside. ©2010 IEEE.

More Details

Mid-infrared amplitude and phase measurement of metamaterials using tandem interferometry

Optics InfoBase Conference Papers

Passmore, Brandon S.; Anderson, J.; Ten Eyck, Gregory A.; Wendt, Joel R.; Brener, Igal; Sinclair, M.B.; Shaner, Eric A.

A tandem interferometer system measuring the absolute phase and amplitude of planar split-ring resonators fabricated on a BaF2 substrate with a designed resonance at 10.5 μm is presented. © 2010 Optical Society of America.

More Details

Modeling of general 1-D periodic leaky-wave antennas in layered media using EIGER™

Proceedings - 2010 12th International Conference on Electromagnetics in Advanced Applications, ICEAA'10

Johnson, W.A.; Paulotto, S.; Jackson, D.R.; Wilton, D.R.; Langston, William L.; Basilio, Lorena I.; Baccarelli, P.; Valerio, G.; Celepcikay, F.T.

This paper presents a mixed-potential integral-equation formulation for analyzing 1-D periodic leaky-wave antennas in layered media. The structures are periodic in one dimension and finite in the other two dimensions. The unit cell consists of an arbitrary-shaped metallic/dielectric structure. The formulation has been implemented in the EIGER™ code in order to obtain the real and complex propagation wavenumbers of the bound and leaky modes of such structures. Validation results presented here include a 1-D periodic planar leaky-wave antenna and a fully 3-D waveguide test case. ©2010 IEEE.

More Details

Video performance for high security applications

Proceedings - International Carnahan Conference on Security Technology

Connell, Jack C.; Norman, Bradley C.

The complexity of physical protection systems has increased to address modern threats to national security and emerging commercial technologies. A key element of modern physical protection systems is the data presented to the human operator used for rapid determination of the cause of an alarm, whether false (e.g., caused by an animal, debris, etc.) or real (e.g., a human adversary). Alarm assessment (the human validation of a sensor alarm) primarily relies on imaging technologies and video systems. Developing measures of effectiveness (MOE) that drive the design or evaluation of a video system or technology becomes a challenge, given the subjectivity of the application (e.g., alarm assessment). Sandia National Laboratories has conducted empirical analysis using field test data and mathematical models such as binomial distribution and Johnson target transfer functions to develop MOEs for video system technologies. Depending on the technology, the task of the security operator and the distance to the target, the Probability of Assessment (PAs) can be determined as a function of a variety of conditions or assumptions. PAs used as an MOE allows the systems engineer to conduct trade studies, make informed design decisions, or evaluate new higher-risk technologies. This paper outlines general video system design trade-offs, discusses ways video can be used to increase system performance, and lists MOEs for video systems used in subjective applications such as alarm assessment. ©2010 IEEE.

More Details

Scalable in-memory RDFS closure on billions of triples

CEUR Workshop Proceedings

Goodman, Eric; Mizell, David

We present an RDFS closure algorithm, specifically designed and implemented on the Cray XMT supercomputer, that obtains inference rates of 13 million inferences per second on the largest system configuration we used. The Cray XMT, with its large global memory (4TB for our experiments), permits the construction of a conceptually straightforward algorithm, fundamentally a series of operations on a shared hash table. Each thread is given a partition of triple data to process, a dedicated copy of the ontology to apply to the data, and a reference to the hash table into which it inserts inferred triples. The global nature of the hash table allows the algorithm to avoid a common obstacle for distributed memory machines: the creation of duplicate triples. On LUBM data sets ranging between 1.3 billion and 5.3 billion triples, we obtain nearly linear speedup except for two portions: file I/O, which can be ameliorated with the additional service nodes, and data structure initialization, which requires nearly constant time for runs involving 32 processors or more.

More Details

Optimal design and control strategies for novel combined heat and power (CHP) fuel cell systems: PART i of II - Datum design conditions and approach

ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology, FUELCELL 2010

Colella, Whitney G.

Energy network optimization (ENO) models identify new strategies for designing, installing, and controlling stationary combined heat and power (CHP) fuel cell systems (FCSs) with the goals of 1) minimizing electricity and heating costs for building owners and 2) reducing emissions of the primary greenhouse gas (GHG) - carbon dioxide (CO2). A goal of this work is to employ relatively inexpensive simulation studies to discover more financially and environmentally effective approaches for installing CHP FCSs. ENO models quantify the impact of different choices made by power generation operators, FCS manufacturers, building owners, and governments with respect to two primary goals - energy cost savings for building owners and CO2 emission reductions. These types of models are crucial for identifying cost and CO 2 optima for particular installations. Optimal strategies change with varying economic and environmental conditions, FCS performance, the characteristics of building demand for electricity and heat, and many other factors. ENO models evaluate both "business-as-usual" and novel FCS operating strategies. For the scenarios examined here, relative to a base case of no FCSs installed, model results indicate that novel strategies could reduce building energy costs by 25% and CO2 emissions by 80%. Part I of II articles discusses model assumptions and methodology. Part II of II articles illustrates model results for a university campus town and generalizes these results for diverse communities. Copyright © 2010 by ASME.

More Details

Optimal design and control strategies for novel combined heat and power (CHP) fuel cell systems: PART II of II - Case study results

ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology, FUELCELL 2010

Colella, Whitney G.

Innovative energy system optimization models are deployed to evaluate novel fuel cell system (FCS) operating strategies, not typically pursued by commercial industry. Most FCS today are installed according to a 'business-as-usual' approach: (1) stand-alone (unconnected to district heating networks and low-voltage electricity distribution lines), (2) not load following (not producing output equivalent to the instantaneous electrical or thermal demand of surrounding buildings), (3) employing a fairly fixed heat-to-power ratio (producing heat and electricity in a relatively constant ratio to each other), and (4) producing only electricity and no recoverable heat. By contrast, models discussed here consider novel approaches as well. Novel approaches include (1) networking (connecting FCSs to electrical and/or thermal networks), (2) load following (having FCSs produce only the instantaneous electricity or heat demanded by surrounding buildings), (3) employing a variable heat-to-power ratio (such that FCS can vary the ratio of heat and electricity they produce), (4) co-generation (combining the production of electricity and recoverable heat), (5) permutations of these together, and (6) permutations of these combined with more 'business-as-usual' approaches. The detailed assumptions and methods behind these models are described in Part I of this article pair.

More Details

Application of the multi-mechanism deformation model for three-dimensional simulations of salt behavior for the strategic petroleum reserve

44th US Rock Mechanics Symposium - 5th US/Canada Rock Mechanics Symposium

Sobolik, Steven; Bean, J.E.; Ehgartner, Brian L.

The U.S. Strategic Petroleum Reserve stores crude oil in 62 solution-mined caverns in salt domes located in Texas and Louisiana. Historically, three-dimensional geomechanical simulations of the behavior of the caverns have been performed using a power law creep model. Using this method, and calibrating the creep coefficient to field data such as cavern closure and surface subsidence, has produced varying degrees of agreement with observed phenomena. However, as new salt dome locations are considered for oil storage facilities, pre-construction geomechanical analyses are required that need site-specific parameters developed from laboratory data obtained from core samples. The multi-mechanism deformation (M-D) model is a rigorous mathematical description of both transient and steady-state creep phenomena. Recent enhancements to the numerical integration algorithm within the model have created a more numerically stable implementation of the M-D model. This report presents computational analyses to compare the results of predictions of the geomechanical behavior at the West Hackberry SPR site using both models. The recently-published results using the power law creep model produced excellent agreement with an extensive set of field data. The M-D model results show similar agreement using parameters developed directly from laboratory data. It is also used to predict the behavior for the construction and operation of oil storage caverns at a new site, to identify potential problems before a final cavern layout is designed. Copyright 2010 ARMA, American Rock Mechanics Association.

More Details

Fracture and fatigue tolerant steel pressure vessels for gaseous hydrogen

American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP

San Marchi, Chris; Somerday, Brian P.

Fatigue crack growth rates and rising displacement fracture thresholds have been measured for a 4130X steel in 45 MPa hydrogen gas. the ratio of minimum to maximum load (R-ratio) and cyclic frequency was varied to assess the effects of these variables on fatigue crack growth rates. Decreasing frequency and increasing R were both found to increase crack growth rate, however, these variables are not independent of each other. Changing frequency from 0.1 Hz to 1 Hz reduced crack growth rates at R = 0.5, but had no effect at R = 0.1. When applied to a design life calculation for a steel pressure vessel consistent with a typical hydrogen trailer tube, the measured fatigue and fracture data predicted a re-inspection interval of nearly 29 years, consistent with the excellent service history of such vessels which have been in use for many years. Copyright © 2010 by ASME.

More Details

Scaling trends in SET pulse widths in sub-100 nm bulk CMOS processes

IEEE Transactions on Nuclear Science

Gadlage, Matthew J.; Ahlbin, Jonathan R.; Narasimham, Balaji; Bhuva, Bharat L.; Massengill, Lloyd W.; Reed, Robert A.; Schrimpf, Ronald D.; Vizkelethy, Gyorgy

More Details

Design of digital circuits using inverse-mode cascode SiGe HBTs for single event upset mitigation

IEEE Transactions on Nuclear Science

Thrivikraman, Tushar K.; Wilcox, Edward; Phillips, Stanley D.; Cressler, John D.; Marshall, Cheryl; Vizkelethy, Gyorgy; Dodd, Paul E.; Marshall, Paul

We report on the design and measured results of a new SiGe HBT radiation hardening by design technique called the inverse-mode cascode (IMC). A third-generation SiGe HBT IMC device was tested in a time resolved ion beam induced charge collection (TRIBICC) system, and was found to have over a 75% reduction in peak current transients with the use of an n-Tiedown on the IMC sub-collector node. Digital shift registers in a 1st-generation SiGe HBT technology were designed and measured under a heavy-ion beam, and shown to increase the LET threshold over standard npn only shift registers. Using the CREME96 tool, the expected orbital bit-errors/day were simulated to be approximately 70% lower with the IMC shift register. These measured results help demonstrate the efficacy of using the IMC device as a low-cost means for improving the SEE radiation hardness of SiGe HBT technology without increasing area or power. © 2010 IEEE.

More Details

The effect of layout topology on single-event transient pulse quenching in a 65 nm bulk CMOS process

IEEE Transactions on Nuclear Science

Ahlbin, J.R.; Gadlage, M.J.; Ball, D.R.; Witulski, A.W.; Bhuva, B.L.; Reed, R.A.; Vizkelethy, G.; Massengill, L.W.

Heavy-ion microbeam and broadbeam data are presented for a 65 nm bulk CMOS process showing the existence of pulse quenching at normal and angular incidence for designs where the pMOS transistors are in common n-wells or isolated in separate n-wells. Experimental data and simulations show that pulse quenching is more prevalent in the common n-well design than the separate n-well design, leading to significantly reduced SET pulsewidths and SET cross-section in the common n-well design. © 2010 IEEE.

More Details

A fully-integrated aptamer-based affinity assay platform for monitoring astronaut health in space

14th International Conference on Miniaturized Systems for Chemistry and Life Sciences 2010, MicroTAS 2010

Sommer, G.J.; Hecht, A.H.; Durland, R.H.; Yang, X.; Singh, Anup K.; Hatch, Anson

Here we demonstrate the suitability of robust nucleic acid affinity reagents in an integrated point-of-care diagnostic platform for monitoring proteomic biomarkers indicative of astronaut health in spaceflight applications. A model thioaptamer[1] targeting nuclear factor-kappa B (NF-KB) is evaluated in an on-chip electrophoretic gel-shift assay for human serum. Key steps of i) mixing sample with the aptamer, ii) buffer exchange, and iii) preconcentration of sample were successfully integrated upstream of fluorescence-based detection. Challenges due to i) nonspecific interactions with serum, and ii) preconcentration at a nanoporous membrane are discussed and successfully resolved to yield a robust, rapid, and fully-integrated diagnostic system.

More Details

Differential white cell count by centrifugal microfluidics

14th International Conference on Miniaturized Systems for Chemistry and Life Sciences 2010, MicroTAS 2010

Schaff, U.Y.; Tentori, A.M.; Sommer, Gregory J.

We present a method for counting white blood cells that is uniquely compatible with centrifugation based microfluidics. Blood is deposited on top of one or more layers of density media within a microfluidic disk. Spinning the disk causes the cell populations within whole blood to settle through the media, reaching an equilibrium based on the density of each cell type. Separation and fluorescence measurement of cell types stained with a DNA dye is demonstrated using this technique. The integrated signal from bands of fluorescent microspheres is shown to be proportional to their initial concentration in suspension.

More Details

Life assessment of full-scale EDS vessel under impulsive loadings

American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP

Yip, Mien; Haroldsen, Brent L.

The Explosive Destruction System (EDS) was developed by Sandia National Laboratories for the US Army Product Manager for Non-Stockpile Chemical Materiel (PMNSCM) to destroy recovered, explosively configured, chemical munitions. PMNSCM currently has five EDS units that have processed over 1,400 items. The system uses linear and conical shaped charges to open munitions and attack the burster followed by chemical treatment of the agent. The main component of the EDS is a stainless steel, cylindrical vessel, which contains the explosion and the subsequent chemical treatment. Extensive modeling and testing have been used to design and qualify the vessel for different applications and conditions. The high explosive (HE) pressure histories and subsequent vessel response (strain histories) are modeled using the analysis codes CTH and LS-DYNA, respectively. Using the model results, a load rating for the EDS is determined based on design guidance provided in the ASME Code, Sect. VIII, Div. 3, Code Case No. 2564. One of the goals is to assess and understand the vessel's capacity in containing a wide variety of detonation sequences at various load levels. Of particular interest are to know the total number of detonation events at the rated load that can be processed inside each vessel, and a maximum load (such as that arising from an upset condition) that can be contained without causing catastrophic failure of the vessel. This paper will discuss application of Code Case 2564 to the stainless steel EDS vessels, including a fatigue analysis using a J-R curve, vessel response to extreme upset loads, and the effects of strain hardening from successive events. Copyright © 2010 by ASME.

More Details

An ultra-sensitive microfluidic immunoassay using living radical polymerization and porous polymer monoliths

14th International Conference on Miniaturized Systems for Chemistry and Life Sciences 2010, MicroTAS 2010

Abhyankar, Vinay V.; Singh, Anup K.; Hatch, Anson

We present a platform that combines patterned photopolymerized polymer monoliths with living radical polymerization (LRP) to develop a low cost microfluidic based immunoassay capable of sensitive (low to sub pM) and rapid (<30 minute) detection of protein in 100 μL sample. The introduction of LRP functionality to the porous monolith allows one step grafting of functionalized affinity probes from the monolith surface while the composition of the hydrophilic graft chain reduces non-specific interactions and helps to significantly improve the limit of detection.

More Details

HPC application performance and scaling: Understanding trends and future challenges with application benchmarks on past, present and future tri-lab computing systems

AIP Conference Proceedings

Rajan, Mahesh; Doerfler, Douglas W.

More Details

Digital microfluidic hub for automated nucleic acid sample preparation

14th International Conference on Miniaturized Systems for Chemistry and Life Sciences 2010, MicroTAS 2010

Kim, Hanyoup; Bartsch, Michael S.; Renzi, Ronald F.; Pezzola, Genevieve L.; Remillard, Erin M.; Kittlaus, Eric A.; He, Jim H.; Patel, Kamlesh D.

We have designed, fabricated, and characterized a digital microfluidic (DMF) platform to function as a central hub for interfacing multiple lab-on-a-chip sample processing modules towards automating the preparation of clinically-derived DNA samples for ultrahigh throughput sequencing (UHTS). The platform enables plug-and-play installation of a two-plate DMF device with consistent spacing, offers flexible connectivity for transferring samples between modules, and uses an intuitive programmable interface to control droplet/electrode actuations. Additionally, the hub platform uses transparent indium-tin oxide (ITO) electrodes to allow complete top and bottom optical access to the droplets on the DMF array, providing additional flexibility for various detection schemes.

More Details

Mid-infrared surface plasmon coupled emitters utilizing intersublevel transitions in InAs quantum dots

Proceedings of SPIE - The International Society for Optical Engineering

Shaner, Eric A.; Passmore, Brandon S.; Adams, David; Ribaudo, Troy; Lyon, Stephen A.; Chow, Weng W.; Wasserman, Daniel

We demonstrate mid-infrared electroluminescence from intersublevel transitions in self-assembled InAs quantum dots coupled to surface plasmon modes on metal hole arrays. Subwavelength metal hole arrays with different periodicity are patterned into the top contact of the broadband (9 - 15 μm) quantum dot material and the measured electroluminescence is compared to devices without a metal hole array. The resulting normally directed emission is narrowed and a splitting in the spectral structure is observed. By applying a coupled quantum electrodynamic model and using reasonable values for quantum dot distributions and plasmon linewidths we are able to reproduce the experimentally measured spectral characteristics of device emission when using strong coupling parameters. © 2010 SPIE.

More Details

Design, implementation and migration of security systems as an extreme project

Proceedings - International Carnahan Conference on Security Technology

Scharmer, Carol; Trujillo, David J.

Decision Trees, algorithms, software code, risk management, reports, plans, drawings, change control, presentations, and analysis- all useful tools and efforts but time consuming, resource intensive, and potentially costly for projects that have absolute schedule and budget constraints. What are necessary and prudent efforts when a customer calls with a major security problem that needs to be fixed with a proven, off-the-approval-list, multi-layered integrated system with high visibility and limited funding and expires at the end of the Fiscal Year? Whether driven by budget cycles, safety, or by management decree, many such projects begin with generic scopes and funding allocated based on a rapid management "guestimate." Then a Project Manager (PM) is assigned a project with a predefined and potentially limited scope, compressed schedule, and potentially insufficient funding. The PM is tasked to rapidly and cost effectively coordinate a requirements-based design, implementation, test, and turnover of a fully operational system to the customer, all while the customer is operating and maintaining an existing security system. Many project management manuals call this an impossible project that should not be attempted. However, security is serious business and the reality is that rapid deployment of proven systems via an "Extreme Project" is sometimes necessary. Extreme Projects can be wildly successful but require a dedicated team of security professionals lead by an experienced project manager using a highly-tailored and agile project management process with management support at all levels, all combined with significant interface with the customer. This paper does not advocate such projects or condone eliminating the valuable analysis and project management techniques. Indeed, having worked on a well-planned project provides the basis for experienced team members to complete Extreme Projects. This paper does, however, provide insight into what it takes for projects to be successfully implemented and accepted when completed under extreme conditions. ©2010 IEEE.

More Details

Using SysML to model complex systems for security

Proceedings - International Carnahan Conference on Security Technology

Cano, Lester A.

As security systems integrate more Information Technology the design of these systems has tended to become more complex. Some of the most difficult issues in designing Complex Security Systems (CSS) are: • Capturing Requirements • Defining Hardware Interfaces • Defining Software Interfaces • Integrating Technologies • Radio Systems • Voice Over IP Systems • Situational Awareness Systems. ©2010 IEEE.

More Details

Video performance for high security applications

Proceedings - International Carnahan Conference on Security Technology

Connell, Jack C.; Norman, Bradley C.

The complexity of physical protection systems has increased to address modern threats to national security and emerging commercial technologies. A key element of modern physical protection systems is the data presented to the human operator used for rapid determination of the cause of an alarm, whether false (e.g., caused by an animal, debris, etc.) or real (e.g., a human adversary). Alarm assessment (the human validation of a sensor alarm) primarily relies on imaging technologies and video systems. Developing measures of effectiveness (MOE) that drive the design or evaluation of a video system or technology becomes a challenge, given the subjectivity of the application (e.g., alarm assessment). Sandia National Laboratories has conducted empirical analysis using field test data and mathematical models such as binomial distribution and Johnson target transfer functions to develop MOEs for video system technologies. Depending on the technology, the task of the security operator and the distance to the target, the Probability of Assessment (PAs) can be determined as a function of a variety of conditions or assumptions. PAs used as an MOE allows the systems engineer to conduct trade studies, make informed design decisions, or evaluate new higher-risk technologies. This paper outlines general video system design trade-offs, discusses ways video can be used to increase system performance, and lists MOEs for video systems used in subjective applications such as alarm assessment. ©2010 IEEE.

More Details

HPC application performance and scaling: Understanding trends and future challenges with application benchmarks on past, present and future tri-lab computing systems

AIP Conference Proceedings

Rajan, Mahesh; Doerfler, Douglas W.

More Details

Potential uses of a wireless network in physical security systems

Proceedings - International Carnahan Conference on Security Technology

Witzke, Edward L.

Many possible applications requiring or benefiting from a wireless network are available for bolstering physical security and awareness at high security installations or facilities. These enhancements are not always straightforward and may require careful analysis, selection, tuning, and implementation of wireless technologies. In this paper, an introduction to wireless networks and the task of enhancing physical security is first given. Next, numerous applications of a wireless network are brought forth. The technical issues that arise when using a wireless network to support these applications are then discussed. Finally, a summary is presented. ©2010 IEEE.

More Details

Fast Katz and commuters: Efficient estimation of social relatedness in large networks

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Esfandiar, Pooya; Bonchi, Francesco; Gleich, David F.; Greif, Chen; Lakshmanan, Laks V.S.; On, Byung W.

Motivated by social network data mining problems such as link prediction and collaborative filtering, significant research effort has been devoted to computing topological measures including the Katz score and the commute time. Existing approaches typically approximate all pairwise relationships simultaneously. In this paper, we are interested in computing: the score for a single pair of nodes, and the top-k nodes with the best scores from a given source node. For the pairwise problem, we apply an iterative algorithm that computes upper and lower bounds for the measures we seek. This algorithm exploits a relationship between the Lanczos process and a quadrature rule. For the top-k problem, we propose an algorithm that only accesses a small portion of the graph and is related to techniques used in personalized PageRank computing. To test the scalability and accuracy of our algorithms we experiment with three real-world networks and find that these algorithms run in milliseconds to seconds without any preprocessing. © 2010 Springer-Verlag.

More Details

Unproven screening devices threaten the lives of police and military

Proceedings - International Carnahan Conference on Security Technology

Murray, Dale W.

In a world plagued with improvised explosive devices, drugs and dangerous people, the desire to field technology to protect our police and military is providing a fertile market for the proliferation of protection technologies that range from the unproven to the disproven. The market place is currently being flooded with detection equipment making inflated and inaccurate marketing claims of high reliably, high detection probabilities, and ease of operation - all while offering detection capabilities at safe distances. The manufacturers of these devices have found a willing global marketplace, which includes some of the most dangerous places in the world. Despite a wealth of contradictory performance and testing data available on the Internet, sales of these devices remain brisk and profitable. Rather than enhancing the security of police and military personnel, the reliance on these unproven and disproven devices is creating a sense of false security that is actually lowering the safety of front-line forces in places like Iraq and Afghanistan. This paper addresses the development and distribution history of some of these devices and describes the testing performed by Sandia National Laboratories in Albuquerque, and other reputable testing agencies that illustrate the real danger in using this kind of unproven technology. ©2010 IEEE.

More Details

Variance estimation for radiation analysis and multi-sensor fusion

IEEE Nuclear Science Symposium Conference Record

Mitchell, Dean J.

Variance estimates that are used in the analysis of radiation measurements must represent all of the measurement and computational uncertainties in order to obtain accurate parameter and uncertainty estimates. This report describes an approach for estimating components of the variance associated with both statistical and computational uncertainties. A multi-sensor fusion method is presented that renders parameter estimates for one-dimensional source models based on input from different types of sensors. Data obtained with multiple types of sensors improve the accuracy of the parameter estimates, and inconsistencies in measurements are also reflected in the uncertainties for the estimated parameter. Specific analysis examples are presented that incorporate a single gross neutron measurement with gamma-ray spectra that contain thousands of channels. The parameter estimation approach is tolerant of computational errors associated with detector response functions and source model approximations. © 2010 IEEE.

More Details

Elucidating through-plane liquid water profile in a polymer electrolyte membrane fuel cell

ECS Transactions

Wang, Yun; Chen, Ken S.

In this paper, a numerical model incorporating micro-porous layers (MPLs) is presented for simulating water transport within the gas diffusion layers (GDLs) and MPLs as well as across their interfaces in a polymer electrolyte membrane (PEM) fuel cell. One-dimensional analysis is conducted to investigate the impacts of MPL and GDL properties on the liquid-water profile across the anode GDL-MPL and cathode MPL-GDL regions. Furthermore, two-dimensional numerical simulations that take MPLs into account are also carried out to elucidate liquid water transport, particularly through-plane liquid-water profile in a PEM fuel cell. Results from case studies are presented. ©The Electrochemical Society.

More Details

Microscale isoelectric fractionation using immobilized ph-specific membranes for multi-dimensional analysis

14th International Conference on Miniaturized Systems for Chemistry and Life Sciences 2010, MicroTAS 2010

Sommer, Gregory J.; Hatch, Anson

We report on advancements of our microscale isoelectric fractionation (μIEFr) methodology for fast on-chip separation and concentration of proteins based on their isoelectric points (pI). We establish that proteins can be fractionated depending on posttranslational modifications into different pH specific bins, from where they can be efficiently transferred to downstream membranes for additional processing and analysis. This technology can enable on-chip multidimensional glycoproteomics analysis, as a new approach to expedite biomarker identification and verification.

More Details

A combinatorial method for tracing objects using semantics of their shape

Proceedings - Applied Imagery Pattern Recognition Workshop

Diegert, Carl

We present a shape-first approach to finding automobiles and trucks in overhead images and include results from our analysis of an image from the Overhead Imaging Research Dataset [1]. For the OIRDS, our shape-first approach traces candidate vehicle outlines by exploiting knowledge about an overhead image of a vehicle: a vehicle's outline fits into a rectangle, this rectangle is sized to allow vehicles to use local roads, and rectangles from two different vehicles are disjoint. Our shape-first approach can efficiently process high-resolution overhead imaging over wide areas to provide tips and cues for human analysts, or for subsequent automatic processing using machine learning or other analysis based on color, tone, pattern, texture, size, and/or location (shape first). In fact, computationally-intensive complex structural, syntactic, and statistical analysis may be possible when a shape-first work flow sends a list of specific tips and cues down a processing pipeline rather than sending the whole of wide area imaging information. This data flow may fit well when bandwidth is limited between computers delivering ad hoc image exploitation and an imaging sensor. As expected, our early computational experiments find that the shape-first processing stage appears to reliably detect rectangular shapes from vehicles. More intriguing is that our computational experiments with six-inch GSD OIRDS benchmark images show that the shape-first stage can be efficient, and that candidate vehicle locations corresponding to features that do not include vehicles are unlikely to trigger tips and cues. We found that stopping with just the shape-first list of candidate vehicle locations, and then solving a weighted, maximal independent vertex set problem to resolve conflicts among candidate vehicle locations, often correctly traces the vehicles in an OIRDS scene. © 2010 IEEE.

More Details

Laser damage by ns and sub-ps pulses on hafnia/silica anti-reflection coatings on fused silica double-sided polished using zirconia or ceria and washed with or without an alumina wash step

Proceedings of SPIE - The International Society for Optical Engineering

Bellum, John; Kletecka, Damon; Kimmel, Mark; Rambo, Patrick K.; Smith, Ian C.; Schwarz, Jens; Atherton, B.; Hobbs, Zachary; Smith, Douglas

Sandia's Large Optics Coating Operation has extensive results of laser induced damage threshold (LIDT) testing of its anti-reflection (AR) and high reflection coatings on substrates pitch polished using ceria and washed in a process that includes an alumina wash step. The purpose of the alumina wash step is to remove residual polishing compound to minimize its role in laser damage. These LIDT tests are for multi longitudinal mode, ns class pulses at 1064 nm and 532 nm (NIF-MEL protocol) and mode locked, sub-ps class pulses at 1054 nm (Sandia measurements), and show reasonably high and adequate laser damage resistance for coatings in the beam trains of Sandia's Z-Backlighter terawatt and petawatt lasers. An AR coating in addition to coatings of our previous reports confirms this with LIDTs of 33.0 J/cm2 for 3.5 ns pulses and 1.8 J/cm2 for 350 fs pulses. In this paper, we investigate both ceria and zirconia in doublesided polishing (common for large flat Z-Backlighter laser optics) as they affect LIDTs of an AR coating on fused silica substrates washed with or without the alumina wash step. For these AR coated, double-sided polished surfaces, ceria polishing in general affords better resistance to laser damage than zirconia polishing and laser damage is less likely with the alumina wash step than without it. This is supported by specific results of laser damage tests with 3.5 ns, multi longitudinal mode, single shot pulses at 1064 nm and 532 nm, with 7.0 ns, single and multi longitudinal mode, single and multi shot pulses at 532 nm, and with 350 fs, mode-locked, single shot pulses at 1054 nm. © 2010 Copyright SPIE - The International Society for Optical Engineering.

More Details

A system of parallel and selective microchannels for biosensor sample delivery and containment

Proceedings of IEEE Sensors

Edwards, Thayne L.

This paper presents an integrated microfluidic system for selectively interrogating parallel biosensors at programmed time intervals. Specifically, the microfluidic system is used for delivering a volume of sample from a single source to a surface-based arrayed biosensor. In this case the biosensors were an array of electrochemical electrodes modified with sample specific capture probes. In addition, the sample was required to be captured, stored and removed for additional laboratory analysis. This was accomplished by a plastic laminate stack in which each thin laminate was patterned by CO2 laser ablation to form microchannels and two novel valves. The first valve was a normally closed type opened by heat via an electrically resistive wire. The second valve was a check type integrated into a removable storage chamber. This setup allows for remote and leave-behind sensing applications and also containment of sensed sample for further laboratory analysis. ©2010 IEEE.

More Details

Neutron imaging using the anisotropic response of crystalline organic scintillators

IEEE Nuclear Science Symposium Conference Record

Brubaker, E.; Steele, J.

An anisotropy in a scintillator's response to neutron elastic scattering interactions can in principle be used to gather directional information about a neutron source using interactions in a single detector. In crystalline organic scintillators, such as anthracene, both the amplitude and the time structure of the scintillation light pulse vary with the direction of the proton recoil with respect to the crystalline axes. Therefore, we have investigated the exploitation of this effect to enable compact, high-efficiency fast neutron detectors that have directional sensitivity via a precise measurement of the pulse shape. We report measurements of the pulse height and shape dependence on proton recoil angle in anthracene, stilbene, p-terphenyl, diphenyl anthracene (DPA), and tetraphenyl butadiene (TPB). Image reconstruction for simulated neutron sources is demonstrated using maximum likelihood methods for optimal directional sensitivity. © 2010 IEEE.

More Details

Transient stability and control of renewable generators based on Hamiltonian Surface Shaping and Power Flow Control: Part I-theory

Proceedings of the IEEE International Conference on Control Applications

Robinett, Rush D.; Wilson, David G.

The swing equations for renewable generators connected to the grid are developed and a wind turbine is used as an example. The swing equations for the renewable generators are formulated as a natural Hamiltonian system with externally applied non-conservative forces. A two-step process referred to as Hamiltonian Surface Shaping and Power Flow Control (HSSPFC) is used to analyze and design feedback controllers for the renewable generators system. This formulation extends previous results on the analytical verification of the Potential Energy Boundary Surface (PEBS) method to nonlinear control analysis and design and justifies the decomposition of the system into conservative and non-conservative systems to enable a two-step, serial analysis and design procedure. The first step is to analyze the system as a conservative natural Hamiltonian system with no externally applied non-conservative forces. The Hamiltonian surface of the swing equations is related to the Equal-Area Criterion and the PEBS method to formulate the nonlinear transient stability problem. This formulation demonstrates the effectiveness of proportional feedback control to expand the stability region. The second step is to analyze the system as natural Hamiltonian system with externally applied non-conservative forces. The time derivative of the Hamiltonian produces the work/rate (power flow) equations which is used to ensure balanced power flows from the renewable generators to the loads. The Second Law of Thermodynamics is applied to the power flow equations to determine the stability boundaries (limit cycles) of the renewable generators system and enable design of feedback controllers that meet stability requirements while maximizing the power generation and flow to the load. Necessary and sufficient conditions for stability of renewable generators systems are determined based on the concepts of Hamiltonian systems, power flow, exergy (the maximum work that can be extracted from an energy flow) rate, and entropy rate. © 2010 IEEE.

More Details

Neutron imaging using the anisotropic response of crystalline organic scintillators

IEEE Nuclear Science Symposium Conference Record

Brubaker, E.; Steele, J.

An anisotropy in a scintillator's response to neutron elastic scattering interactions can in principle be used to gather directional information about a neutron source using interactions in a single detector. In crystalline organic scintillators, such as anthracene, both the amplitude and the time structure of the scintillation light pulse vary with the direction of the proton recoil with respect to the crystalline axes. Therefore, we have investigated the exploitation of this effect to enable compact, high-efficiency fast neutron detectors that have directional sensitivity via a precise measurement of the pulse shape. We report measurements of the pulse height and shape dependence on proton recoil angle in anthracene, stilbene, p-terphenyl, diphenyl anthracene (DPA), and tetraphenyl butadiene (TPB). Image reconstruction for simulated neutron sources is demonstrated using maximum likelihood methods for optimal directional sensitivity. © 2010 IEEE.

More Details

Electrostatic transfer of epitaxial graphene to glass

Biedermann, Laura B.; Beechem, Thomas E.; Ross III, Anthony J.; Pan, Wei; Ohta, Taisuke; Howell, Stephen W.

We report on a scalable electrostatic process to transfer epitaxial graphene to arbitrary glass substrates, including Pyrex and Zerodur. This transfer process could enable wafer-level integration of graphene with structured and electronically-active substrates such as MEMS and CMOS. We will describe the electrostatic transfer method and will compare the properties of the transferred graphene with nominally-equivalent 'as-grown' epitaxial graphene on SiC. The electronic properties of the graphene will be measured using magnetoresistive, four-probe, and graphene field effect transistor geometries [1]. To begin, high-quality epitaxial graphene (mobility 14,000 cm2/Vs and domains >100 {micro}m2) is grown on SiC in an argon-mediated environment [2,3]. The electrostatic transfer then takes place through the application of a large electric field between the donor graphene sample (anode) and the heated acceptor glass substrate (cathode). Using this electrostatic technique, both patterned few-layer graphene from SiC(000-1) and chip-scale monolayer graphene from SiC(0001) are transferred to Pyrex and Zerodur substrates. Subsequent examination of the transferred graphene by Raman spectroscopy confirms that the graphene can be transferred without inducing defects. Furthermore, the strain inherent in epitaxial graphene on SiC(0001) is found to be partially relaxed after the transfer to the glass substrates.

More Details

Low temperature synthesis and sintering of d-UO2 nanoparticles

Robinson, David; Nenoff, Tina M.; Huang, Jian Y.; Provencio, P.N.

We report on the novel room temperature method of synthesizing advanced nuclear fuels; a method that virtually eliminates any volatility of components. This process uses radiolysis to form stable nanoparticle (NP) nuclear transuranic (TRU) fuel surrogates and in-situ heated stage TEM to sinter the NPs. The radiolysis is performed at Sandia's Gamma Irradiation Facility (GIF) 60Co source (3 x 10{sup 6} rad/hr). Using this method, sufficient quantities of fuels for research purposes can be produced for accelerated advanced nuclear fuel development. We are focused on both metallic and oxide alloy nanoparticles of varying compositions, in particular d-U, d-U/La alloys and d-UO2 NPs. We present detailed descriptions of the synthesis procedures, the characterization of the NPs, the sintering of the NPs, and their stability with temperature. We have employed UV-vis, HRTEM, HAADF-STEM imaging, single particle EDX and EFTEM mapping characterization techniques to confirm the composition and alloying of these NPs.

More Details

Wind Energy 101

Karlson, Benjamin

This presentation on wind energy discusses: (1) current industry status; (2) turbine technologies; (3) assessment and siting; and (4) grid integration. There are no fundamental technical barriers to the integration of 20% wind energy into the nation's electrical system, but there needs to be a continuing evolution of transmission planning and system operation policy and market development for this to be most economically achieved.

More Details

Beryllium liner z-pinches for Magneto-Rayleigh--Taylor studies on Z

Mcbride, Ryan; Slutz, Stephen A.; Jennings, Christopher A.; Sinars, Daniel; Lemke, Raymond W.; Martin, Matthew R.; Vesey, Roger A.; Cuneo, Michael E.; Herrmann, Mark H.

Magnetic Liner Inertial Fusion (MagLIF) [S. A. Slutz, et al., Phys. Plasmas 17 056303 (2010)] is a promising new concept for achieving >100 kJ of fusion yield on Z. The greatest threat to this concept is the Magneto-Rayleigh-Taylor (MRT) instability. Thus an experimental campaign has been initiated to study MRT growth in fast-imploding (<100 ns) cylindrical liners. The first sets of experiments studied aluminum liner implosions with prescribed sinusoidal perturbations (see talk by D. Sinars). By contrast, this poster presents results from the latest sets of experiments that used unperturbed beryllium (Be) liners. The purpose for using Be is that we are able to radiograph 'through' the liner using the 6-keV photons produced by the Z-Beamlet backlighting system. This has enabled us to obtain time-resolved measurements of the imploding liner's density as a function of both axial and radial location throughout the field of view. This data is allowing us to evaluate the integrity of the inside (fuel-confining) surface of the imploding liner as it approaches stagnation.

More Details

Design of a flyer-plate-driven hydrodynamic instability experiment for Z

Harding, Eric H.; Martin, Matthew R.; Cuneo, Michael E.

We present the preliminary design of a Z experiment intended to observe the growth of several hydrodynamic instabilities (RT, RM, and KH) in a high-energy-density plasma. These experiments rely on the Z-machine's unique ability to launch cm-sized slabs of cold material (known as flyer plates) to velocities of several times 10 km/s. During the proposed experiment, the flyer plate will impact a cm-sized target with an embedded interface that has a prescribed sinusoidal perturbation. The flyer plate will generate a strong shock that propagates into the target and later initiates unstable growth of the perturbation. The goal of the experiment is to observe the perturbation at various stages of its evolution as it transitions from linear to non-linear growth, and finally to a fully turbulent state.

More Details

Above-60-MeV proton acceleration with a 150 TW laser system

Schollmeier, Marius; Geissel, Matthias; Sefkow, Adam B.; Rambo, Patrick K.; Schwarz, Jens; Atherton, B.

Laser-accelerated proton beams can be used in a variety of applications, e.g. ultrafast radiography of dense objects or strong electromagnetic fields. Therefore high energies of tens of MeV are required. We report on proton-acceleration experiments with a 150 TW laser system using mm-sized thin foils and mass-reduced targets of various thicknesses. Thin- foil targets yielded maximum energies of 50 MeV. A further reduction of the target dimensions from mm-size to 250 x 250 x 25 microns increased the maximum proton energy to >65 MeV, which is comparable to proton energies measured only at higher-energy, Petawatt-class laser systems. The dependence of the maximum energy on target dimensions was investigated, and differences between mm-sized thin foils and mass-reduced targets will be reported.

More Details

Measurements of magneto-Rayleigh-Taylor instability growth during the implosion of initially solid metal liners

Physics of Plasmas

Sinars, Daniel; Edens, Aaron; Lopez, Mike R.; Smith, Ian C.; Shores, Jonathon; Slutz, Stephen A.; Bennett, Guy R.; Atherton, B.; Savage, Mark E.; Stygar, William A.; Leifeste, Gordon T.; Herrmann, Mark H.; Mcbride, Ryan; Cuneo, Michael E.; Jennings, Christopher A.; Peterson, K.J.; Vesey, Roger A.; Nakhleh, Charles

Abstract not provided.

The effect of healthcare environments on a pandemic influenza outbreak

Cannon, Daniel C.; Glass Jr., Robert J.

The objectives of this presentation are: (1) To determine if healthcare settings serve as intensive transmission environments for influenza epidemics, increasing effects on communities; (2) To determine which mitigation strategies are best for use in healthcare settings and in communities to limit influenza epidemic effects; and (3) To determine which mitigation strategies are best to prevent illness in healthcare workers.

More Details

Developing a theory of the societal lifecycle of cigarette smoking : explaining and anticipating trends using information feedback

Zagonel, Aldo A.; Brodsky, Nancy S.; Conrad, Stephen H.; Brown, Theresa J.; Glass Jr., Robert J.

Cigarette smoking presented the most significant public health challenge in the United States in the 20th Century and remains the single most preventable cause of morbidity and mortality in this country. A number of System Dynamics models exist that inform tobacco control policies. We reviewed them and discuss their contributions. We developed a theory of the societal lifecycle of smoking, using a parsimonious set of feedback loops to capture historical trends and explore future scenarios. Previous work did not explain the long-term historical patterns of smoking behaviors. Much of it used stock-and-flow to represent the decline in prevalence in the recent past. With noted exceptions, information feedbacks were not embedded in these models. We present and discuss our feedback-rich conceptual model and illustrate the results of a series of simulations. A formal analysis shows phenomena composed of different phases of behavior with specific dominant feedbacks associated with each phase. We discuss the implications of our society's current phase, and conclude with simulations of what-if scenarios. Because System Dynamics models must contain information feedback to be able to anticipate tipping points and to help identify policies that exploit leverage in a complex system, we expanded this body of work to provide an endogenous representation of the century-long societal lifecycle of smoking.

More Details

Dynamic NBTI effects in HfSiON

Hjalmarson, Harold P.

Negative bias temperature instability is an issue of critical importance as the space electronics industry evolves because it may dominate the reliability lifetime. Understanding its physical origin is therefore essential in determining how best to search for methods of mitigation. It has been suggested that the magnitude of the effect is strongly dependent on circuit operation conditions (static or dynamic modes). In the present work, we examine the time constants related to the charging and recovery of trapped charged induced by NBTI in HfSiON gate dielectric devices. In previous work, we avoided the issue of charge relaxation during acquisition of the I{sub ds}(V{sub gs}) curve by invoking a continuous stressing technique whereby {Delta}V{sub th} was extracted from a series of single point I{sub ds} measurements. This method relied heavily on determination of the initial value of the source-drain current (I{sub ds}{sup o}) prior to application of gate-source stress. In the present work we have used a new pulsed measurement system (Keithley SCS 4200-PIV) which not only removes this uncertainty but also permits dynamic measurements in which devices are AC stressed (Fig. 1a) or subjected to cycles of continued DC stresses followed by relaxation (Fig. 1b). We can now examine the charging and recovery characteristics of NBTI with higher precision than previously possible. We have performed NBTI stress experiments at room temperature on p-channel MOSFETs made with HfSiON gate dielectrics. In all cases the devices were stressed in the linear regime with V{sub ds}=-0.1V. We have defined two separate waveforms/pulse trains as illustrated in Fig 1. These were applied to the gate of the MOSFET. Firstly we examined the charging characteristics by applying an AC stress at 2.5MHz or 10Hz for different times. For a 50% duty cycle this corresponded to V{sub gs} = - 2V pulses for 200ns or 500ms followed by V{sub gs} = 0V pulses for 200ns or 500ms recovery respectively. In between 'bursts' of AC stress cycles, the I{sub ds}(V{sub gs}) characteristic in the range (-0.6V, -1.3V) was measured in 10.2 {micro}s. V{sub th} was extracted directly from this curve, or from a single I{sub ds} point normalized to the initial I{sub ds}{sup o} using our previous method. The resulting I{sub ds}/I{sub ds}{sup o} curves are compared; in Fig 2, the continuous stress results are included. In the second method, we examined the recovery dynamic by holding V{sub gs} = 0V for a finite amount of time (range 100 ns to 100 ms) following stress at V{sub gs} = - 2V for various times. In Fig 3 we compare |{Delta}V{sub th}(t)| results for recovery times of 100ms, 1ms, 100{micro}s, 50{micro}s, 25{micro}s, 10{micro}s, 100ns, and DC (i.e. no recovery) The data in Fig 2 shows that with a high frequency stress (2.5MHz) devices undergo significantly less (but finite) current degradation than devices stressed at 10Hz. This appears to be limited by charging and not by recovery. Fig 3 supports this hypothesis since for 100ns recovery periods, only a small percentage of the trapped charge relaxes. Detailed explanation of these experiments will be presented at the conference.

More Details

Loki-Infect 3 : a portable networked agent model for designing community-level containment strategies

Hobbs, Jacob; Cannon, Daniel C.; Evans, Leland B.; Glass Jr., Robert J.

Loki-Infect 3 is a desktop application intended for use by community-level decision makers. It allows rapid construction of small-scale studies of emerging or hypothetical infectious diseases in their communities and evaluation of the potential effectiveness of various containment strategies. It was designed with an emphasis on modularity, portability, and ease of use. Our goal is to make this program freely available to community workers across the world.

More Details

Geologic controls influencing CO2 loss from a leaking well

Martinez, Mario J.; Hopkins, Polly L.; Mckenna, Sean A.

Injection of CO2 into formations containing brine is proposed as a long-term sequestration solution. A significant obstacle to sequestration performance is the presence of existing wells providing a transport pathway out of the sequestration formation. To understand how heterogeneity impacts the leakage rate, we employ two dimensional models of the CO2 injection process into a sandstone aquifer with shale inclusions to examine the parameters controlling release through an existing well. This scenario is modeled as a constant-rate injection of super-critical CO2 into the existing formation where buoyancy effects, relative permeabilities, and capillary pressures are employed. Three geologic controls are considered: stratigraphic dip angle, shale inclusion size and shale fraction. In this study, we examine the impact of heterogeneity on the amount and timing of CO2 released through a leaky well. Sensitivity analysis is performed to classify how various geologic controls influence CO2 loss. A 'Design of Experiments' approach is used to identify the most important parameters and combinations of parameters to control CO2 migration while making efficient use of a limited number of computations. Results are used to construct a low-dimensional description of the transport scenario. The goal of this exploration is to develop a small set of parametric descriptors that can be generalized to similar scenarios. Results of this work will allow for estimation of the amount of CO2 that will be lost for a given scenario prior to commencing injection. Additionally, two-dimensional and three-dimensional simulations are compared to quantify the influence that surrounding geologic media has on the CO2 leakage rate.

More Details
Results 70501–70600 of 99,299
Results 70501–70600 of 99,299