Publications

Results 8101–8150 of 99,299

Search results

Jump to search filters

MELCOR Accident Progression and Source Term Demonstration Calculations for a FHR

Wagner, Kenneth C.

MELCOR is an integrated thermal hydraulics, accident progression, and source term code for reactor safety analysis that has been developed at Sandia National Laboratories for the United States Nuclear Regulatory Commission (NRC) since the early 1980s. Though MELCOR originated as a light water reactor (LWR) code, development and modernization efforts have expanded its application scope to include non-LWR reactor concepts. Current MELCOR development efforts include providing the NRC with the analytical capabilities to support regulatory readiness for licensing non-LWR technologies under Strategy 2 of the NRC's near- term Implementation Action Plans. Beginning with the Next Generation Nuclear Project (NGNP), MELCOR has undergone a range of enhancements to provide analytical capabilities for modeling the spectrum of advanced non-LWR concepts. This report describes the generic plant model developed to demonstrate MELCOR capabilities to perform fluoride-salt-cooled high-temperature reactor (FHR) safety evaluations. The generic plant model is based on publicly-available FHR design information. For plant aspects (e.g., reactor building leak rate and details of the cover-gas system) that are not described in the FHR references, the analysts made assumptions needed to construct a MELCOR full-plant model. The FHR model uses a TRi-structural ISOtropic (TRISO)-particle fuel pebble-bed reactor with a primary system rejecting heat to two coiled tube air heat ex changers. Three passive direct reactor auxiliary cooling systems provide heat removal to supplement or replace the emergency secondary system heat removal during accident conditions. Surrounding the reactor vessel is a low volume reactor cavity that insulates the reactor with fire bricks and thick concrete walls. A refractory reactor liner system provides water cooling to reduce the concrete wall temperatures. Example calculations are performed to show the plant response and MELCOR capabilities to characterize a range of accident conditions. The accidents selected for evaluation consider a range of degraded and failed modes of operation for key safety functions providing reactivity control, the primary system decay heat removal and also a piping leak of the line to the coolant drain tank.

More Details

Sierra/SolidMechanics 5.6 Verification Tests Manual

Bergel, Guy L.; Beckwith, Frank; De Frias, Gabriel J.; Manktelow, Kevin; Merewether, Mark T.; Miller, Scott T.; Parmar, Krishen J.; Shelton, Timothy R.; Thomas, Jesse E.; Trageser, Jeremy; Treweek, Benjamin; Veilleux, Michael G.; Wagman, Ellen B.

Presented in this document is a small portion of the tests that exist in the Sierra / SolidMechanics (Sierra / SM) verfication test suite. Most of these tests are run nightly with the Sierra / SM code suite, and the results of the test are checked versus the correct analytical result. For each of the tests presented in this document, the test setup, a description of the analytic solution, and comparison of the Sierra / SM code results to the analytic solution is provided. Mesh convergence is also checked on a nightly basis for several of these tests. This document can be used to confirm that a given code capability is verfied or referenced as a compilation of example problems. Additional example problems are provided in the Sierra / SM Example Problems Manual. Note, many other verfication tests exist in the Sierra / SM test suite, but have not yet been included in this manual.

More Details

A Review of Technologies that can Provide a 'Root of Trust' for Operational Technologies

Karch, Benjamin; Rowland, Mike

The supply chain attack pathway is being increasingly used by adversaries to bypass security controls and gain unauthorized access to sensitive networks and equipment (e.g., Critical Digital Assets). Cyber-attacks targeting supply chain generally aim to compromise the environments, products, or services of vendors and suppliers to inject, add, or substitute authentic software and hardware with malicious elements. These malicious elements are deemed to be authentic as they arise from the vendor or supplier (i.e., the supply chain). This research aims at providing a survey of technologies that have the potential to reduce exposure of sensitive networks and equipment to these attacks, thereby improving tamper resistance. The recent advances in the performance and capabilities of these technologies in recent years has increased their potential applications to reduce or mitigate exposure of the supply chain attack pathway. The focus being on providing an analysis of the benefits and disadvantages of smart cards, secure tokens, and elements to provide root of trust. This analysis provides evidence that these roots of trust can increase the technical capability of equipment and networks to authenticate changes to software and configuration thereby increasing resilience to some supply chain attacks, such as those related to logistics and ICT channels, but not development environment attacks.

More Details
Results 8101–8150 of 99,299
Results 8101–8150 of 99,299