Publications

Results 1–50 of 286

Search results

Jump to search filters

DEPLOYABLE COLD ATOM INTERFEROMETRY SENSOR PLATFORMS BASED ON DIFFRACTIVE OPTICS AND INTEGRATED PHOTONICS

Lee, Jongmin; Biedermann, Grant; Mcguinness, Hayden J.E.; Soh, Daniel B.S.; Christensen, Justin; Ding, Roger; Finnegan, Patrick S.; Hoth, Gregory A.; Kindel, Will; Little, Bethany J.; Rosenthal, Randy R.; Wendt, Joel R.; Lentine, Anthony L.; Eichenfield, Matt; Gehl, Michael; Kodigala, Ashok; Siddiqui, Aleem; Skogen, Erik J.; Vawter, Gregory A.; Ison, Aaron; Bossert, David; Fuerschbach, Kyle H.; Gillund, Daniel P.; Walker, Charles; De Smet, Dennis; Brashar, Connor L.; Berg, Joseph; Jhaveri, Prabodh M.; Smith, Tony G.; Kemme, Shanalyn A.; Schwindt, Peter D.

Abstract not provided.

Near-Infrared Nanophotonics through Dynamic Control of Carrier Density in Conducting Ceramics

Wood, Michael G.; Campione, Salvatore; Luk, Ting S.; Wendt, Joel R.; Shank, Joshua; Sanchez, Victoria; Serkland, Darwin K.

Major breakthroughs in silicon photonics often come from the integration of new materials into the platform, from bonding III-Vs for on-chip lasers to growth of Ge for high-speed photodiodes. This report describes the integration of transparent conducting oxides (TCOs) onto silicon waveguides to enable ultra-compact (<10 μm) electro-optical modulators. These modulators exploit the "epsilon-near-zero" effect in TCOs to create a strong light-matter interaction and allow for a significant reduction in footprint. Waveguide-integrated devices fabricated in the Sandia Microfab demonstrated gigahertz-speed operation of epsilon-near-zero based modulators for the first time. Numerical modeling of these devices matched well with theory and showed a path for significant improvements in device performance with high-carrier-mobility TCOs such as cadmium oxide. A cadmium oxide sputtering capability has been brought online at Sandia; integration of these high mobility films is the subject of future work to develop and mature this exciting class of Si photonics devices.

More Details

Topological Quantum Materials for Quantum Computation

Nenoff, Tina M.; Chou, Stanley S.; Dickens, Peter T.; Modine, Normand A.; Yu, Wenlong; Lee, Stephen R.; Sapkota, Keshab R.; Wang, George T.; Wendt, Joel R.; Medlin, Douglas L.; Leonard, Francois; Pan, Wei

Recent years have seen an explosion in research efforts discovering and understanding novel electronic and optical properties of topological quantum materials (TQMs). In this LDRD, a synergistic effort of materials growth, characterization, electrical-magneto-optical measurements, combined with density functional theory and modeling has been established to address the unique properties of TQMs. Particularly, we have carried out extensive studies in search for Majorana fermions (MFs) in TQMs for topological quantum computation. Moreover, we have focused on three important science questions. 1) How can we controllably tune the properties of TQMs to make them suitable for quantum information applications? 2) What materials parameters are most important for successfully observing MFs in TQMs? 3) Can the physical properties of TQMs be tailored by topological band engineering? Results obtained in this LDRD not only deepen our current knowledge in fundamental quantum physics but also hold great promise for advanced electronic/photonic applications in information technologies.

More Details

Saturation Velocity Measurement of Al0.7Ga0.3N-Channel High Electron Mobility Transistors

Journal of Electronic Materials

Klein, Brianna A.; Baca, Albert G.; Lepkowski, Stefan; Nordquist, Christopher D.; Wendt, Joel R.; Allerman, A.A.; Armstrong, Andrew A.; Douglas, Erica A.; Abate, Vincent M.; Kaplar, Robert

Gate length dependent (80 nm–5000 mm) radio frequency measurements to extract saturation velocity are reported for Al0.85Ga0.15N/Al0.7Ga0.3N high electron mobility transistors fabricated into radio frequency devices using electron beam lithography. Direct current characterization revealed the threshold voltage shifting positively with increasing gate length, with devices changing from depletion mode to enhancement mode when the gate length was greater than or equal to 450 nm. Transconductance varied from 10 mS/mm to 25 mS/mm, with the 450 nm device having the highest values. Maximum drain current density was 268 mA/mm at 10 V gate bias. Scattering-parameter characterization revealed a maximum unity gain bandwidth (fT) of 28 GHz, achieved by the 80 nm gate length device. A saturation velocity value of 3.8 × 106 cm/s, or 35% of the maximum saturation velocity reported for GaN, was extracted from the fT measurements.

More Details

Quantum dots with split enhancement gate tunnel barrier control

Applied Physics Letters

Rochette, S.; Rudolph, Martin; Roy, A.M.; Curry, Matthew; Eyck, G.A.T.; Manginell, Ronald; Wendt, Joel R.; Pluym, Tammy; Carr, Stephen M.; Ward, Daniel R.; Lilly, M.P.; Carroll, M.S.

We introduce a silicon metal-oxide-semiconductor quantum dot architecture based on a single polysilicon gate stack. The elementary structure consists of two enhancement gates separated spatially by a gap, one gate forming a reservoir and the other a quantum dot. We demonstrate that, in three devices based on two different versions of this elementary structure, a wide range of tunnel rates is attainable while maintaining single-electron occupation. A characteristic change in the slope of the charge transitions as a function of the reservoir gate voltage, attributed to screening from charges in the reservoir, is observed in all devices and is expected to play a role in the sizable tuning orthogonality of the split enhancement gate structure. The all-silicon process is expected to minimize strain gradients from electrode thermal mismatch, while the single gate layer should avoid issues related to overlayers (e.g., additional dielectric charge noise) and help improve the yield. Finally, reservoir gate control of the tunnel barrier has implications for initialization, manipulation, and readout schemes in multi-quantum dot architectures.

More Details

RF Performance of Al0.85Ga0.15N/Al0.70Ga0.30N high electron mobility transistors with 80-nm Gates

IEEE Electron Device Letters

Baca, Albert G.; Klein, Brianna A.; Wendt, Joel R.; Lepkowski, Stefan; Nordquist, Christopher D.; Armstrong, Andrew A.; Allerman, A.A.; Douglas, Erica A.; Kaplar, Robert

Al-rich AlGaN-channel high electron mobility transistors with 80-nm long gates and 85% (70%) Al in the barrier (channel) were evaluated for RF performance. The dc characteristics include a maximum current of 160 mA/mm with a transconductance of 24 mS/mm, limited by source and drain contacts, and an on/off current ratio of 109. fT of 28.4 GHz and fMAX of 18.5 GHz were determined from small-signal S-parameter measurements. Output power density of 0.38 W/mm was realized at 3 GHz in a power sweep using on-wafer load pull techniques.

More Details

A silicon metal-oxide-semiconductor electron spin-orbit qubit

Nature Communications

Jock, Ryan M.; Jacobson, Noah T.; Harvey-Collard, Patrick; Mounce, Andrew M.; Srinivasa, Vanita; Ward, Daniel R.; Anderson, John M.; Manginell, Ronald; Wendt, Joel R.; Rudolph, Martin; Pluym, Tammy; Foulk, James W.; Baczewski, Andrew D.; Witzel, Wayne M.; Carroll, M.S.

The silicon metal-oxide-semiconductor (MOS) material system is a technologically important implementation of spin-based quantum information processing. However, the MOS interface is imperfect leading to concerns about 1/f trap noise and variability in the electron g-factor due to spin-orbit (SO) effects. Here we advantageously use interface-SO coupling for a critical control axis in a double-quantum-dot singlet-triplet qubit. The magnetic fieldorientation dependence of the g-factors is consistent with Rashba and Dresselhaus interface-SO contributions. The resulting all-electrical, two-Axis control is also used to probe the MOS interface noise. The measured inhomogeneous dephasing time, T2m, of 1.6 ?s is consistent with 99.95% 28Si enrichment. Furthermore, when tuned to be sensitive to exchange fluctuations, a quasi-static charge noise detuning variance of 2 μeV is observed, competitive with low-noise reports in other semiconductor qubits. This work, therefore, demonstrates that the MOS interface inherently provides properties for two-Axis qubit control, while not increasing noise relative to other material choices.

More Details

A metasurface optical modulator using voltage-controlled population of quantum well states

Applied Physics Letters

Sarma, Raktim S.; Campione, Salvatore; Goldflam, Michael; Shank, Joshua; Noh, Jinhyun; Le, Loan T.; Lange, Michael D.; Ye, Peide D.; Wendt, Joel R.; Ruiz, Isaac; Howell, Stephen W.; Sinclair, Michael B.; Wanke, Michael C.; Brener, Igal

The ability to control the light-matter interaction with an external stimulus is a very active area of research since it creates exciting new opportunities for designing optoelectronic devices. Recently, plasmonic metasurfaces have proven to be suitable candidates for achieving a strong light-matter interaction with various types of optical transitions, including intersubband transitions (ISTs) in semiconductor quantum wells (QWs). For voltage modulation of the light-matter interaction, plasmonic metasurfaces coupled to ISTs offer unique advantages since the parameters determining the strength of the interaction can be independently engineered. In this work, we report a proof-of-concept demonstration of a new approach to voltage-tune the coupling between ISTs in QWs and a plasmonic metasurface. In contrast to previous approaches, the IST strength is here modified via control of the electron populations in QWs located in the near field of the metasurface. By turning on and off the ISTs in the semiconductor QWs, we observe a modulation of the optical response of the IST coupled metasurface due to modulation of the coupled light-matter states. Because of the electrostatic design, our device exhibits an extremely low leakage current of ∼6 pA at a maximum operating bias of +1 V and therefore very low power dissipation. Our approach provides a new direction for designing voltage-tunable metasurface-based optical modulators.

More Details

Spectroscopy of Multielectrode Tunnel Barriers

Physical Review Applied

Carroll, M.S.; Shirkhorshidian, Amir; Gamble, John K.; Maurer, Leon; Carr, Stephen M.; Dominguez, Jason; Ten Eyck, Gregory A.; Wendt, Joel R.; Nielsen, Erik N.; Jacobson, Noah T.; Lilly, Michael

Despite their ubiquity in nanoscale electronic devices, the physics of tunnel barriers has not been developed to the extent necessary for the engineering of devices in the few-electron regime. This problem is of urgent interest, as this is the specific regime into which current extreme-scale electronics fall. Here, we propose theoretically and validate experimentally a compact model for multielectrode tunnel barriers, suitable for design-rules-based engineering of tunnel junctions in quantum devices. We perform transport spectroscopy at approximately T=4 K, extracting effective barrier heights and widths for a wide range of biases, using an efficient Landauer-Büttiker tunneling model to perform the analysis. We find that the barrier height shows several regimes of voltage dependence, either linear or approximately exponential. Effects on threshold, such as metal-insulator transition and lateral confinement, are included because they influence parameters that determine barrier height and width (e.g., the Fermi energy and local electric fields). We compare these results to semiclassical solutions of Poisson's equation and find them to agree qualitatively. Finally, this characterization technique is applied to an efficient lateral tunnel barrier design that does not require an electrode directly above the barrier region in order to estimate barrier heights and widths.

More Details

Low dissipation spectral filtering using a field-effect tunable III-V hybrid metasurface

Applied Physics Letters

Sarma, Raktim S.; Campione, Salvatore; Goldflam, Michael; Shank, Joshua; Noh, Jinhyun; Smith, Sean; Ye, Peide D.; Sinclair, Michael B.; Klem, John F.; Wendt, Joel R.; Ruiz, Isaac; Howell, Stephen W.; Brener, Igal

Considering the power constrained scaling of silicon complementary metal-oxide-semiconductor technology, the use of high mobility III-V compound semiconductors such as In0.53Ga0.47As in conjunction with high-κ dielectrics is becoming a promising option for future n-type metal-oxide-semiconductor field-effect-transistors. Development of low dissipation field-effect tunable III-V based photonic devices integrated with high-κ dielectrics is therefore very appealing from a technological perspective. In this work, we present an experimental realization of a monolithically integrable, field-effect-tunable, III-V hybrid metasurface operating at long-wave-infrared spectral bands. Our device relies on strong light-matter coupling between epsilon-near-zero (ENZ) modes of an ultra-thin In0.53Ga0.47As layer and the dipole resonances of a complementary plasmonic metasurface. The tuning mechanism of our device is based on field-effect modulation, where we modulate the coupling between the ENZ mode and the metasurface by modifying the carrier density in the ENZ layer using an external bias voltage. Modulating the bias voltage between ±2 V, we deplete and accumulate carriers in the ENZ layer, which result in spectrally tuning the eigenfrequency of the upper polariton branch at 13 μm by 480 nm and modulating the reflectance by 15%, all with leakage current densities less than 1 μA/cm2. Our wavelength scalable approach demonstrates the possibility of designing on-chip voltage-tunable filters compatible with III-V based focal plane arrays at mid- and long-wave-infrared wavelengths.

More Details

High-Fidelity Single-Shot Readout for a Spin Qubit via an Enhanced Latching Mechanism

Physical Review. X

Carroll, M.S.; Harvey-Collard, Patrick; Anjou, Martin'; Rudolph, Martin; Jacobson, Noah T.; Dominguez, Jason; Ten Eyck, Gregory A.; Wendt, Joel R.; Pluym, Tammy; Lilly, Michael; Coish, William; Pioro-Ladriere, Michel

The readout of semiconductor spin qubits based on spin blockade is fast but suffers from a small charge signal. Previous work suggested large benefits from additional charge mapping processes; however, uncertainties remain about the underlying mechanisms and achievable fidelity. In this work, we study the single-shot fidelity and limiting mechanisms for two variations of an enhanced latching readout. We achieve average single-shot readout fidelities greater than 99.3% and 99.86% for the conventional and enhanced readout, respectively, the latter being the highest to date for spin blockade. The signal amplitude is enhanced to a full one-electron signal while preserving the readout speed. Furthermore, layout constraints are relaxed because the charge sensor signal is no longer dependent on being aligned with the conventional (2,0)–(1,1) charge dipole. Silicon donor-quantum-dot qubits are used for this study, for which the dipole insensitivity substantially relaxes donor placement requirements. One of the readout variations also benefits from a parametric lifetime enhancement by replacing the spin-relaxation process with a charge-metastable one. This provides opportunities to further increase the fidelity. The relaxation mechanisms in the different regimes are investigated. This work demonstrates a readout that is fast, has a one-electron signal, and results in higher fidelity. As a result, it further predicts that going beyond 99.9% fidelity in a few microseconds of measurement time is within reach.

More Details

Tunable dual-band graphene-based infrared reflectance filter

Optics Express

Goldflam, Michael; Ruiz, Isaac; Howell, Stephen W.; Wendt, Joel R.; Sinclair, Michael B.; Peters, David; Foulk, James W.

We experimentally demonstrated an actively tunable optical filter that controls the amplitude of reflected long-wave-infrared light in two separate spectral regions concurrently. Our device exploits the dependence of the excitation energy of plasmons in a continuous and unpatterned sheet of graphene on the Fermi-level, which can be controlled via conventional electrostatic gating. The filter enables simultaneous modification of two distinct spectral bands whose positions are dictated by the device geometry and graphene plasmon dispersion. Within these bands, the reflected amplitude can be varied by over 15% and resonance positions can be shifted by over 90 cm-1. Electromagnetic simulations verify that tuning arises through coupling of incident light to graphene plasmons by a grating structure. Importantly, the tunable range is determined by a combination of graphene properties, device structure, and the surrounding dielectrics, which dictate the plasmon dispersion. Thus, the underlying design shown here isapplicable across a broad range of infrared frequencies.

More Details

Gigahertz speed operation of epsilon-near-zero silicon photonic modulators

Optica

Wood, Michael G.; Campione, Salvatore; Parameswaran, S.; Luk, Ting S.; Wendt, Joel R.; Serkland, Darwin K.; Keeler, Gordon A.

Optical communication systems increasingly require electrooptical modulators that deliver high modulation speeds across a large optical bandwidth with a small device footprint and a CMOS-compatible fabrication process. Although silicon photonic modulators based on transparent conducting oxides (TCOs) have shown promise for delivering on these requirements, modulation speeds to date have been limited. Here, we describe the design, fabrication, and performance of a fast, compact electroabsorption modulator based on TCOs. The modulator works by using bias voltage to increase the carrier density in the conducting oxide, which changes the permittivity and hence optical attenuation by almost 10 dB. Under bias, light is tightly confined to the conducting oxide layer through nonresonant epsilon-near-zero (ENZ) effects, which enable modulation over a broad range of wavelengths in the telecommunications band. Our approach features simple integration with passive silicon waveguides, the use of stable inorganic materials, and the ability to modulate both transverse electric and magnetic polarizations with the same device design. Using a 4-μm-long modulator and a drive voltage of 2 Vpp, we demonstrate digital modulation at rates of 2.5 Gb/s. We report broadband operation with a 6.5 dB extinction ratio across the 1530–1590 nm band and a 10 dB insertion loss. This work verifies that high-speed ENZ devices can be created using conducting oxide materials and paves the way for additional technology development that could have a broad impact on future optical communications systems.

More Details

Assessing the manufacturing tolerances and uniformity of CMOS compatible metamaterial fabrication

Journal of Vacuum Science and Technology B: Nanotechnology and Microelectronics

Musick, Katherine M.; Wendt, Joel R.; Resnick, Paul; Sinclair, Michael B.; Burckel, David B.

The manufacturing tolerances of a stencil-lithography variant, membrane projection lithography, were investigated. In the first part of this work, electron beam lithography was used to create stencils with a range of linewidths. These patterns were transferred into the stencil membrane and used to pattern metallic lines on vertical silicon faces. Only the largest lines, with a nominal width of 84 nm, were resolved, resulting in 45 ± 10 nm (average ± standard deviation) as deposited with 135-nm spacing. Although written in the e-beam write software file as 84-nm in width, the lines exhibited linewidth bias. This can largely be attributed to nonvertical sidewalls inherent to dry etching techniques that cause proportionally larger impact with decreasing feature size. The line edge roughness can be significantly attributed to the grain structure of the aluminum nitride stencil membrane. In the second part of this work, the spatial uniformity of optically defined (as opposed to e-beam written) metamaterial structures over large areas was assessed. A Fourier transform infrared spectrometer microscope was used to collect the reflection spectra of samples with optically defined vertical split ring from 25 spatially resolved 300 × 300 μm regions in a 1-cm2 area. The technique is shown to provide a qualitative measure of the uniformity of the inclusions.

More Details

Ion implantation for deterministic single atom devices

Review of Scientific Instruments

Bielejec, Edward S.; Pacheco, Jose L.; Perry, Daniel L.; Wendt, Joel R.; Ten Eyck, Gregory A.; Manginell, Ronald; Pluym, Tammy; Luhman, Dwight R.; Lilly, Michael; Carroll, M.S.

We demonstrate a capability of deterministic doping at the single atom level using a combination of direct write focused ion beam and solid-state ion detectors. The focused ion beam system can position a single ion to within 35 nm of a targeted location and the detection system is sensitive to single low energy heavy ions. This platform can be used to deterministically fabricate single atom devices in materials where the nanostructure and ion detectors can be integrated, including donor-based qubits in Si and color centers in diamond.

More Details

Coherent coupling between a quantum dot and a donor in silicon

Nature Communications

Carroll, M.S.; Harvey-Collard, Patrick; Jacobson, Noah T.; Rudolph, Martin; Wendt, Joel R.; Pluym, Tammy; Foulk, James W.; Pioro-Ladriere, Michel; Dominguez, Jason

Individual donors in silicon chips are used as quantum bits with extremely low error rates. However, physical realizations have been limited to one donor because their atomic size causes fabrication challenges. Quantum dot qubits, in contrast, are highly adjustable using electrical gate voltages. This adjustability could be leveraged to deterministically couple donors to quantum dots in arrays of qubits. In this work, we demonstrate the coherent interaction of a 31P donor electron with the electron of a metal-oxide-semiconductor quantum dot. We form a logical qubit encoded in the spin singlet and triplet states of the two-electron system. We show that the donor nuclear spin drives coherent rotations between the electronic qubit states through the contact hyperfine interaction. This provides every key element for compact two-electron spin qubits requiring only a single dot and no additional magnetic field gradients, as well as a means to interact with the nuclear spin qubit.

More Details
Results 1–50 of 286
Results 1–50 of 286