In 2016, the National Nuclear Security Agency (NNSA) initiated the Minority Serving Institution Partnership Plan (MSIPP) targeting Tribal Colleges and Universities (TCUs) to offer programs that will prepare students for technical careers in NNSA’s laboratories and production plants. The MSIPP consortium’s approach is as follows: 1) align investments at the college and university level to develop a curriculum and workforce needed to support NNSA’s nuclear weapon enterprise mission, and 2) to enhance research and education at under-represented colleges and universities. The first TCU consortium that MSIPP launched was known as the Advanced Manufacturing Network Initiative (AMNI) whose purpose was to develop additive manufacturing (AM) learning opportunities. The AMNI consortium consisted of Bay Mills Community College, Cankdeska Cikana Community College, Navajo Tech University, Salish Kootenai Community College, Turtle Mountain Community College, and United Tribes Technical College. In 2016, the American Indian Higher Education Consortium (AIHEC), the AMNI consortium and the Southwestern Indian Polytechnic Institute (SIPI), in collaboration with Sandia National Labs, using a grant by NNSA hosted the first TCU Advanced Manufacturing Technology Summer Institute (TCU AMTSI). The AMNI consortium will officially end Sept. 2022. However, building on the successes of AMNI, in FY22 NNSA’s MSIPP launched three additional consortiums: (1) the Indigenous Mutual Partnership to Advanced Cybersecurity Technology (IMPACT), which focuses on STEM and cybersecurity, (2) the Advanced Synergistic Program for Indigenous Research in Engineering (ASPIRE), which focuses on STEM and the electrical and mechanical engineering skills set needed for renewable and distributed energy systems, and (3) the Partnership for Advanced Manufacturing Education and Research (PAMER), which focuses on developing and maintaining a sustainable pathway for a highly trained, next-generation additive manufacturing workforce and a corresponding community of subject matter experts for NNSA enterprises. The following report summarizes the status update during this quarter for the ASPIRE program.
Reno, Matthew J.; Blakely, Logan; Trevizan, Rodrigo D.; Pena, Bethany D.; Lave, Matt; Azzolini, Joseph A.; Yusuf, Jubair; Jones, Christian B.; Furlani Bastos, Alvaro; Chalamala, Rohit; Korkali, Mert; Sun, Chih-Che; Donadee, Jonathan; Stewart, Emma M.; Donde, Vaibhav; Peppanen, Jouni; Hernandez, Miguel; Deboever, Jeremiah; Rocha, Celso; Rylander, Matthew; Siratarnsophon, Piyapath; Grijalva, Santiago; Talkington, Samuel; Gomez-Peces, Cristian; Mason, Karl; Vejdan, Sadegh; Khan, Ahmad U.; Mbeleg, Jordan S.; Ashok, Kavya; Divan, Deepak; Li, Feng; Therrien, Francis; Jacques, Patrick; Rao, Vittal; Francis, Cody; Zaragoza, Nicholas; Nordy, David; Glass, Jim
This report summarizes the work performed under a project funded by U.S. DOE Solar Energy Technologies Office (SETO) to use grid edge measurements to calibrate distribution system models for improved planning and grid integration of solar PV. Several physics-based data-driven algorithms are developed to identify inaccuracies in models and to bring increased visibility into distribution system planning. This includes phase identification, secondary system topology and parameter estimation, meter-to-transformer pairing, medium-voltage reconfiguration detection, determination of regulator and capacitor settings, PV system detection, PV parameter and setting estimation, PV dynamic models, and improved load modeling. Each of the algorithms is tested using simulation data and demonstrated on real feeders with our utility partners. The final algorithms demonstrate the potential for future planning and operations of the electric power grid to be more automated and data-driven, with more granularity, higher accuracy, and more comprehensive visibility into the system.
Downtown low-voltage (LV) distribution networks are generally protected with network protectors that detect faults by restricting reverse power flow out of the network. This creates protection challenges for protecting the system as new smart grid technologies and distributed generation are installed. This report summarizes well-established methods for the control and protection of LV secondary network systems and spot networks, including operating features of network relays. Some current challenges and findings are presented from interviews with three utilities, PHI PEPCO, Oncor Energy Delivery, and Consolidated Edison Company of New York. Opportunities for technical exploration are presented with an assessment of the importance or value and the difficulty or cost. Finally, this leads to some recommendations for research to improve protection in secondary networks.
Aria is a Galerkin finite element based program for solving coupled-physics problems described by systems of PDEs and is capable of solving nonlinear, implicit, transient and direct-to-steady state problems in two and three dimensions on parallel architectures. The suite of physics currently supported by Aria includes thermal energy transport, species transport, and electrostatics as well as generalized scalar, vector and tensor transport equations. Additionally, Aria includes support for manufacturing process flows via the incompressible Navier-Stokes equations specialized to a low Reynolds number (Re < 1) regime. Enhanced modeling support of manufacturing processing is made possible through use of either arbitrary Lagrangian-Eulerian (ALE) and level set based free and moving boundary tracking in conjunction with quasi-static nonlinear elastic solid mechanics for mesh control. Coupled physics problems are solved in several ways including fully-coupled Newton’s method with analytic or numerical sensitivities, fully-coupled Newton-Krylov methods and a loosely-coupled nonlinear iteration about subsets of the system that are solved using combinations of the aforementioned methods. Error estimation, uniform and dynamic ℎ-adaptivity and dynamic load balancing are some of Aria’s more advanced capabilities.
The Fusion Energy Sciences office supported “A Pilot Program for Research Traineeships to Broaden and Diversify Fusion Energy Sciences” at Sandia National Laboratories during the summer of 2021. This pilot project was motivated in part by the Fusion Energy Sciences Advisory Committee report observation that “The multidisciplinary workforce needed for fusion energy and plasma science requires that the community commit to the creation and maintenance of a healthy climate of diversity, equity, and inclusion, which will benefit the community as a whole and the mission of FES”. The pilot project was designed to work with North Carolina A&T (NCAT) University and leverage SNL efforts in FES to engage underrepresented students in developing and accessing advanced material solutions for plasma facing components in fusion systems. The intent was to create an environment conducive to the development of a sense of belonging amongst participants, foster a strong sense of physics identity among the participants, and provide financial support to enable students to advance academically while earning money. The purpose of this assessment is to review what worked well and lessons that can be learned. We reviewed implementation and execution of the pilot, describe successes and areas for improvement and propose a no-cost extension of the pilot project to apply these lessons and continue engagement activities in the summer of 2022.
Aria is a Galerkin finite element based program for solving coupled-physics problems described by systems of PDEs and is capable of solving nonlinear, implicit, transient and direct-to-steady state problems in two and three dimensions on parallel architectures. The suite of physics currently supported by Aria includes thermal energy transport, species transport, and electrostatics as well as generalized scalar, vector and tensor transport equations. Additionally, Aria includes support for manufacturing process flows via the incompressible Navier-Stokes equations specialized to a low Reynolds number (Re < 1) regime. Enhanced modeling support of manufacturing processing is made possible through use of either arbitrary Lagrangian-Eulerian (ALE) and level set based free and moving boundary tracking in conjunction with quasi-static nonlinear elastic solid mechanics for mesh control. Coupled physics problems are solved in several ways including fully-coupled Newton’s method with analytic or numerical sensitivities, fully-coupled Newton-Krylov methods and a loosely-coupled nonlinear iteration about subsets of the system that are solved using combinations of the aforementioned methods. Error estimation, uniform and dynamic ℎ-adaptivity and dynamic load balancing are some of Aria’s more advanced capabilities.
In March 2021, a functional area drill was held at the Remote Sensing Laboratory–Nellis that focused on using CBRNResponder and the Digital Field Monitoring (DFM) tablets for sample hotline operations and the new paper Sample Control Forms (SCFs) for sample collection. Participants included staff trained and billeted as sample control specialists and Consequence Management Response Team (CMRT) field monitoring personnel. Teams were able to successfully gather and transfer samples to the sample control hotline staff through the manual process, though there were several noted areas for improvement. In July and October 2021, two additional functional area drills were held at Sandia National Laboratories that focused on field sample collection and custody transfer at the sample control hotline for the Consequence Management (CM) Radiological Assistance Program (RAP) program. The overarching goal of the drills was to evaluate the current CM process for sample collection, sample drop off, and sample control using the CBRNResponder mobile and web-based applications. The July 2021 drill had an additional focus to have a subset of samples analyzed by the local analytical laboratory, Radiation Protection Sample Diagnostics (RPSD) laboratory, to evaluate the Laboratory Access portal on CBRNResponder. All three drills were able to accomplish their objectives however, there were several issues noted (Observations: 25 Urgent, 29 Important, and 22 Improvement Opportunities). The observations were prioritized according to their impact on the mission as well as categorized to align with the programmatic functional area required to address the issue. This report provides additional detail on each observation for skillset/program leads and software developers to consider for future improvement or mandatory efforts.
The Sandia Optical Fringe Analysis Slope Tool (SOFAST) is a tool that has been developed at Sandia to measure the surface slope of concentrating solar power optics. This tool has largely remained of research quality over the past few years. Since SOFAST is important to ongoing tests happening at Sandia as well as an interest to others outside Sandia, there is a desire to bring SOFAST up to professional software standards. The goal of this effort was to make progress in several broad areas including: code quality, sample data collection, and validation and testing. During the course of this effort, much progress was made in these areas. SOFAST is now a much more professional grade tool. There are, however, some areas of improvement that could not be addressed in the timeframe of this work and will be addressed in the continuation of this effort.
Early on in 2018 Sandia recognized the Microsystems Engineering, Science and Applications (MESA) Programmatic Asset Lifecycle Planning capability to be unpredictable, inconsistent, reactive, and unable to provide strong linkage to the sponsor's needs. The impetus for this report is to share learnings from MESA's journey towards maturing this capability. This report describes re-building the foundational elements of MESA's Programmatic Asset Lifecycle Planning capability using a risk-based, Multi-Criteria Decision Analysis (MCDA) approach. To begin, MESA's decades-old Piano Chart + Ad Hoc Hybrid Methodology is described with a narrative of its strengths and weaknesses. Then its replacement, the MCDA /Analytical Hierarchy Process, is introduced with a discussion of its strengths and weaknesses. To generate a realistic Programmatic Asset Lifecycle Planning budget outlook, MESA used its rolling 20-year Extended Life Program Plan (MELPP) as a baseline. The new MCDA risk-based prioritization methodology implements DOE/NNSA guidelines for prioritization of DOE activities and provides a reliable, structured framework for combining expert judgement and stakeholder preferences according to an established scientific technique. An in-house Hybrid Decision Support System (HDSS) software application was developed to facilitate production of several key deliverables. The application enables analysis of the prioritization decisions with charts to display and provide linkage of MESA's funding requests to the stakeholders' priorities, strategic objectives, nuclear deterrence programs, MESA priorities, and much more.
Geothermal energy has been underutilized in the U.S., primarily due to the high cost of drilling in the harsh environments encountered during the development of geothermal resources. Drilling depths can approach 5,000 m with temperatures reaching 170 C. In situ geothermal fluids are up to ten times more saline than seawater and highly corrosive, and hard rock formations often exceed 240 MPa compressive strength. This combination of extreme conditions pushes the limits of most conventional drilling equipment. Furthermore, enhanced geothermal systems are expected to reach depths of 10,000 m and temperatures more than 300 °C. To address these drilling challenges, Sandia developed a proof-of-concept tool called the auto indexer under an annual operating plan task funded by the Geothermal Technologies Program (GTP) of the U.S. Department of Energy Geothermal Technologies Office. The auto indexer is a relatively simple, elastomer-free motor that was shown previously to be compatible with pneumatic hammers in bench-top testing. Pneumatic hammers can improve penetration rates and potentially reduce drilling costs when deployed in appropriate conditions. The current effort, also funded by DOE GTP, increased the technology readiness level of the auto indexer, producing a scaled prototype for drilling larger diameter boreholes using pneumatic hammers. The results presented herein include design details, modeling and simulation results, and testing results, as well as background on percussive hammers and downhole rotation.
This document presents tests from the Sierra Structural Mechanics verification test suite. Each of these tests is run nightly with the Sierra/SD code suite and the results of the test checked versus the correct analytic result. For each of the tests presented in this document the test setup, derivation of the analytic solution, and comparison of the Sierra/SD code results to the analytic solution is provided. This document can be used to confirm that a given code capability is verified or referenced as a compilation of example problems.
Two techniques were developed to allow users of microfabricated surface ion traps to detect RF breakdown as soon as it happens, without needing to remove devices from vacuum and look at them with a microscope.
High - temperature particle receivers are being pursued to enable next - generation concentrating solar thermal power (CSP) systems that can achieve higher temperatures (> 700 C) to enable more efficient power cycles, lower overall system costs, and emerging CSP - based process - heat applications. The objective of this work was to develop characterization methods to quantify the particle and heat losses from the open aperture of the particle receiver. Novel camera - based imaging methods were developed and applied to both laboratory - scale and larger 1 MW t on - sun tests at the National Solar Thermal Test Facility in Albuquerque, New Mexico. Validation of the imaging methods was performed using gravimetric and calorimetric methods. In addition, conventional particle - sampling methods using volumetric particle - air samplers were applied to the on - sun tests to compare particle emission rates with regulatory standards for worker safety and pollution. Novel particle sampling methods using 3 - D printed tipping buckets and tethered balloons were also developed and applied to the on - sun particle - receiver tests. Finally, models were developed to simulate the impact of particle size and wind on particle emissions and concentrations as a function of location. Results showed that particle emissions and concentrations were well below regulatory standards for worker safety and pollution. In addition, estimated particle temperatures and advective heat losses from the camera - based imaging methods correlated well with measured values during the on - sun tests.
Based on the rationale presented, nuclear criticality is improbable after salt creep causes compaction of criticality control overpacks (CCOs) disposed at the Waste Isolation Pilot Plant, an operating repository in bedded salt for the disposal of transuranic (TRU) waste from atomic energy defense activities. For most TRU waste, the possibility of post-closure criticality is exceedingly small either because the salt neutronically isolates TRU waste canisters or because closure of a disposal room from salt creep does not sufficiently compact the low mass of fissile material. The criticality potential has been updated here because of the introduction of CCOs, which may dispose up to 380 fissile gram equivalent plutonium-239 in each container. The criticality potential is evaluated through high-fidelity geomechanical modeling of a disposal room filled with CCOs during two representative conditions: (1) large salt block fall, and (2) gradual salt compaction (without brine seepage and subsequent gas generation to permit maximum room closure). Geomechanical models of rock fall demonstrate three tiers of CCOs are not greatly disrupted. Geomechanical models of gradual room closure from salt creep predict irregular arrays of closely packed CCOs after 1000 years, when room closure has asymptotically approached maximum compaction. Criticality models of spheres and cylinders of 380 fissile gram equivalent of plutonium (as oxide) at the predicted irregular spacing demonstrate that an array of CCOs is not critical when surrounded by salt and magnesium oxide, provided the amount of hydrogenous material shipped in the CCO (usually water and plastics) is controlled or boron carbide (a neutron poison) is mixed with the fissile contents.
Organizations that monitor for underground nuclear explosive tests are interested in techniques that automatically characterize recurring events such as aftershocks to reduce the human analyst effort required to produce high-quality event bulletins. Waveform correlation is a technique that is effective in finding similar waveforms from repeating seismic events. In this study, we apply waveform correlation in combination with template event metadata to two aftershock sequences in the Middle East to seek corroborating detections from multiple stations in the International Monitoring System of the Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization. We use waveform templates from stations that are within regional distance of aftershock sequences to detect subsequent events, then use template event metadata to discover what stations are likely to record corroborating arrival waveforms for recurring aftershock events at the same location, and develop additional waveform templates to seek corroborating detections. We evaluate the results with the goal of determining whether applying the method to aftershock events will improve the choice of waveform correlation detections that lead to bulletin-worthy events and reduction of analyst effort.