Publications

Results 19901–20000 of 99,299

Search results

Jump to search filters

Integrated Safety Management System Description

Mowrer, Jared

Personnel at Sandia National Laboratories (hereinafter referred to as Sandia) comply with United States Department of Energy (DOE) Policy 450.4A, Chg 1, Integrated Safety Management Policy, and implement an Integrated Safety Management System (ISMS) to ensure safe operations. Safety is integrated into management and work practices at all levels so missions are accomplished while protecting Members of the Workforce, the public, and the environment. As a result, safety is effectively integrated into all facets of work planning and execution. Thus the management of safety functions becomes an integral part of mission accomplishment and meets the requirements outlined in the DOE Acquisition Regulation (DEAR) 970.5223-1, Integration of Environment, 4/.01, and Health into Work Planning and Execution, clause incorporated by reference into the Prime Contract.

More Details

Hβ and Hγ Absorption-line Profile Inconsistencies in Laboratory Experiments Performed at White Dwarf Photosphere Conditions

The Astrophysical Journal (Online)

Schaeuble, Marc-Andre S.; Nagayama, Taisuke; Bailey, James E.; Gomez, Thomas; Foulk, James W.; Winget, D.E.

The spectroscopic method relies on hydrogen Balmer absorption lines to infer white dwarf (WD) masses. These masses depend on the choice of atmosphere model, hydrogen atomic line shape calculation, and which Balmer series members are included in the spectral fit. In addition to those variables, spectroscopic masses disagree with those derived using other methods. In this article, we present laboratory experiments aimed at investigating the main component of the spectroscopic method: hydrogen line shape calculations. These experiments use X-rays from Sandia National Laboratories' Z-machine to create a uniform ~15 cm3 hydrogen plasma and a ~4 eV backlighter that enables recording high-quality absorption spectra. The large plasma, volumetric X-ray heating that fosters plasma uniformity, and the ability to collect absorption spectra at WD photosphere conditions are improvements over past laboratory experiments. Analysis of the experimental absorption spectra reveals that electron density (${n}_{{\rm{e}}}$) values derived from the Hγ line are ~34% ± 7.3% lower than from Hβ. Two potential systematic errors that may contribute to this difference were investigated. A detailed evaluation of self-emission and plasma gradients shows that these phenomena are unlikely to produce any measurable Hβ–Hγ ${n}_{{\rm{e}}}$ difference. WD masses inferred with the spectroscopic method are proportional to the photosphere density. Hence, the measured Hβ–Hγ ${n}_{{\rm{e}}}$ difference is qualitatively consistent with the trend that WD masses inferred from their Hβ line are higher than that resulting from the analysis of Hβ and Hγ. This evidence may suggest that current hydrogen line shape calculations are not sufficiently accurate to capture the intricacies of the Balmer series.

More Details

Elucidation of Host-Pathogen Interactions via Dual RNA-Seq Analysis to Support Development of Countermeasures Against the Intracellular Bacterial Pathogen Burkholderia pseudomallei

Branda, Steven; Wang, Pei-Li; Labauve, Annette; Sinha, Anupama; Poorey, Kunal; Williams, Kelly P.; Michailidis, George; Schoeniger, Joseph S.; Mageeney, Catherine M.; Courtney, Colleen M.; El-Etr, Sahar; Franco, Magda; Lao, Victoria; Haeseleer, Jose'; Pena, Jose; Segelke, Brent

Abstract not provided.

Results 19901–20000 of 99,299
Results 19901–20000 of 99,299