Studies of size effects on thermal conductivity typically necessitate the fabrication of a comprehensive film thickness series. In this Letter, we demonstrate how material fabricated in a wedged geometry can enable similar, yet higher-throughput measurements to accelerate experimental analysis. Frequency domain thermoreflectance (FDTR) is used to simultaneously determine the thermal conductivity and thickness of a wedged silicon film for thicknesses between 100 nm and 17 μm by considering these features as fitting parameters in a thermal model. FDTR-deduced thicknesses are compared to values obtained from cross-sectional scanning electron microscopy, and corresponding thermal conductivity measurements are compared against several thickness-dependent analytical models based upon solutions to the Boltzmann transport equation. Our results demonstrate how the insight gained from a series of thin films can be obtained via fabrication of a single sample.
Germanium–antimony–telluride has emerged as a nonvolatile phase change memory material due to the large resistivity contrast between amorphous and crystalline states, rapid crystallization, and cyclic endurance. Improving thermal phase stability, however, has necessitated further alloying with optional addition of a quaternary species (e.g., C). In this work, the thermal transport implications of this additional species are investigated using frequency-domain thermoreflectance in combination with structural characterization derived from x-ray diffraction and Raman spectroscopy. Specifically, the room temperature thermal conductivity and heat capacity of (Ge2Sb2Te5)1–xCx are reported as a function of carbon concentration (x ≤ 0:12) and anneal temperature (T ≤ 350 °C) with results assessed in reference to the measured phase, structure, and electronic resistivity. Phase stability imparted by the carbon comes with comparatively low thermal penalty as materials exhibiting similar levels of crystallinity have comparable thermal conductivity despite the addition of carbon. The additional thermal stability provided by the carbon does, however, necessitate higher anneal temperatures to achieve similar levels of structural order.
The influence of He ion radiation on GaAs thermal conductivity was investigated using TDTR and the PGM. We found that damage in the shallow defect only regions of the radiation profile scattering phonons with a frequency to the fourth dependence due to randomly distributed Frankel pairs. Damage near the end of range however, scatters phonons with a second order frequency dependence due to the cascading defects caused by the rapid radiation energy loss at the end of range resulting in defect clusters. Using the PGM and experimental thermal conductivity trends it was then possible to estimate the defect recombination rate and size of defect clusters. The methodology developed here results in a powerful tool for interrogating radiation damage in semiconductors.
In this work, a finite element analysis model was developed to predict the frequency domain thermal response to heat input from a gaussian heat source for arbitrary 2-dimensional geometries. The model was used for geometric parameter fitting of samples experimentally measured using Frequency Domain Thermoreflectance (FDTR). Inverse fitting was performed to on experimental data to extract characteristic geometries of samples with feature sizes smaller than the Il e 2 radius of the laser used to probe the system. Further simulations were done to demonstrate the ability of the system to detect a variety of feature types. Silicon wafers with 50 nm to 1 pm of wet thermal oxide were measured and fit. Finally, microparticles suspended in epoxy were imaged using FDTR.