Publications

Results 176–188 of 188

Search results

Jump to search filters

Epitaxial solution deposition of YBa2Cu3O7-6 coated conductors

Proposed for publication in International Journal of Applied Ceramic Technology.

Siegal, Michael P.; Overmyer, Donald L.; Richardson, Jacob J.; Voigt, James A.; Clem, Paul G.

A variety of solution deposition routes have been reported for processing complex perovskite-based materials such as ferroelectric oxides and conductive electrode oxides, due to ease of incorporating multiple elements, control of chemical stoichiometry, and feasibility for large area deposition. Here, we report an extension of these methods toward long length, epitaxial film solution deposition routes to enable biaxially oriented YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (YBCO)-coated conductors for superconducting transmission wires. Recent results are presented detailing an all-solution deposition approach to YBCO-coated conductors with critical current densities J{sub c} (77 K) > 1 MA/cm{sup 2} on rolling-assisted, biaxially textured, (200)-oriented Ni-W alloy tapes. Solution-deposition methods such as this approach and those of other research groups appear to have promise to compete with vapor phase methods for superconductor electrical properties, with potential advantages for large area deposition and low cost/kA {center_dot} m of wire.

More Details

Development of integrated high value resistors on novel substrates

Proceedings of SPIE - The International Society for Optical Engineering

Tuttle, Bruce T.; Williams, David P.; Olson, Walter R.; Clem, Paul G.; King, Bruce; Renn, Michael

Development of next generation electronics for pulse discharge systems requires miniaturization and integration of high voltage, high value resistors (greater than 100 megohms) with novel substrate materials. These material advances are needed for improved reliability, robustness and performance. In this study, high sheet resistance inks of 1 megohm per square were evaluated to reduce overall electrical system volume. We investigated a deposition process that permits co-sintering of high-sheet-resistance inks with a variety of different material substrates. Our approach combines the direct write process of aerosol jetting with laser sintering and conventional thermal sintering processes. One advantage of aerosol jetting is that high quality, fine line depositions can be achieved on a wide variety of substrates. When combined with laser sintering, the aerosol jetting approach has the capability to deposit resistors at any location on a substrate and to additively trim the resistors to specific values. We have demonstrated a 400 times reduction in overall resistor volume compared to commercial chip resistors using the above process techniques. Resistors that exhibited this volumetric efficiency were fabricated by 850°C thermal processing on alumina substrates and by 0.1W laser sintering on Kapton substrates.

More Details

A Novel Microcombustor for Sensor and Thermal Energy Management Applications in Microsystems

Manginell, Ronald P.; Moorman, Matthew W.; Colburn, Christopher C.; Anderson, Lawrence F.; Gardner, Timothy J.; Mowery-Evans, Deborah L.; Clem, Paul G.; Margolis, Stephen B.

The microcombustor described in this report was developed primarily for thermal management in microsystems and as a platform for micro-scale flame ionization detectors (microFID). The microcombustor consists of a thin-film heater/thermal sensor patterned on a thin insulating membrane that is suspended from its edges over a silicon frame. This micromachined design has very low heat capacity and thermal conductivity and is an ideal platform for heating catalytic materials placed on its surface. Catalysts play an important role in this design since they provide a convenient surface-based method for flame ignition and stabilization. The free-standing platform used in the microcombustor mitigates large heat losses arising from large surface-to-volume ratios typical of the microdomain, and, together with the insulating platform, permit combustion on the microscale. Surface oxidation, flame ignition and flame stabilization have been demonstrated with this design for hydrogen and hydrocarbon fuels premixed with air. Unoptimized heat densities of 38 mW/mm{sup 2} have been achieved for the purpose of heating microsystems. Importantly, the microcombustor design expands the limits of flammability (Low as compared with conventional diffusion flames); an unoptimized LoF of 1-32% for natural gas in air was demonstrated with the microcombustor, whereas conventionally 4-16% observed. The LoF for hydrogen, methane, propane and ethane are likewise expanded. This feature will permit the use of this technology in many portable applications were reduced temperatures, lean fuel/air mixes or low gas flows are required. By coupling miniature electrodes and an electrometer circuit with the microcombustor, the first ever demonstration of a microFID utilizing premixed fuel and a catalytically-stabilized flame has been performed; the detection of -1-3% of ethane in hydrogen/air is shown. This report describes work done to develop the microcombustor for microsystem heating and flame ionization detection and includes a description of modeling and simulation performed to understand the basic operation of this device. Ancillary research on the use of the microcombustor in calorimetric gas sensing is also described where appropriate.

More Details

Materials for freeform fabrication of GHz tunable dielectric photonic crystals

Proposed for publication in the Materials Research Society Conference Proceedings held June 3, 2003.

Clem, Paul G.; Clem, Paul G.; Niehaus, Michael K.; Cesarano, Joseph C.; Lin, Shawn-Yu L.

Photonic crystals are of interest for GHz transmission applications, including rapid switching, GHz filters, and phased-array technology. 3D fabrication by Robocasting enables moldless printing of high solid loading slurries into structures such as the ''woodpile'' structures used to fabricate dielectric photonic band gap crystals. In this work, tunable dielectric materials were developed and printed into woodpile structures via solid freeform fabrication (SFF) toward demonstration of tunable photonic crystals. Barium strontium titanate ceramics possess interesting electrical properties including high permittivity, low loss, and high tunability. This paper discusses the processing route and dielectric characterization of (BaxSr1-XTiO3):MgO ceramic composites, toward fabrication of tunable dielectric photonic band gap crystals.

More Details

Use of Intense Ion Beams for Surface Modification and Creation of New Materials

Renk, Timothy J.; Provencio, P.N.; Clem, Paul G.; Prasad, Somuri V.

We have conducted surface treatment and alloying experiments with Al, Fe, and Ti-based metals on the RHEPP-1 accelerator (0.8 MV, 20 W, 80 ns FHWM, up to 1 Hz repetition rate) at Sandia National Laboratories. Ions are generated by the MAP gas-breakdown active anode, which can yield a number of different beam species including H, N, and C, depending upon the injected gas. Beams of intense pulsed high-power ion beams have been used to produce surface modification by changes in microstructure caused by rapid heating and cooling of the surface. Increase of beam power leads to ablation of a target surface, and redeposition of ablated material onto a separate substrate. Experiments are described in which ion beams are used in an attempt to increase high-voltage breakdown of a treated surface. Surface alloying of coated Pt and Hf layers is also described. This mixing of a previously deposited thin-film layer into a Ti-alloy substrate leads to significantly enhanced surface wear durability, compared to either untreated Ti-alloy alone, or the Ti alloy alone treated with the ion beam. Thin-film layers have been produced from a number of target materials. Films of fine-grain Pt and Er are described, and are compared to conventionally formed films. First attempts to form high-dielectric constant BaTiO{sub 3} are described.

More Details

High J{sub c} YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} Films via Rapid, Low pO{sub 2} Pyrolysis

Journal of Materials Research

Dawley, Jeffrey T.; Clem, Paul G.; Siegal, Michael P.; Overmyer, Donald L.

In this investigation, YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} (YBCO) films were fabricated via a metal acetate, trifluoroacetic acid based sol-gel route, and spin-coat deposited on (100) LaAlO{sub 3} with a focus on maximizing J{sub c}, while minimizing processing time. We demonstrate that the use of a low pO{sub 2} atmosphere during the pyrolysis stage can lead to at least a tetiold reduction in pyrolysis time, compared to a 1 atm. O{sub 2} ambient. High-quality YBCO films on LaAlO{sub 3}, with J{sub c} values up to 3 MA/cm{sup 2} at 77 K, can be routinely crystallized from these rapidly pyrolyzed films.

More Details

Monolayer-Mediated Patterning of Electroceramic Thin Films

Journal of Electroceramics

Clem, Paul G.

Integrated electroceramic thin film devices on semiconductor and insulator substrates feature a variety of attractive attributes, including high capacitance density, nonvolatile memory, sensor/actuator ability, and other unique electronic and optical properties. The ability to pattern such ceramic materials atop semiconductor substrates, thus, is a critical technology. Patterned oxide thin film devices are typically formed by uniform film deposition followed by somewhat complicated post-deposition ion-beam or chemical etching in a controlled environment. We review here the development of an ambient atmosphere technique which allows selective deposition of electroceramic thin layers without such post-deposition etching. In this method, substrate surfaces are selectively functionalized with hydrophobic self-assembled monolayer to modify the adhesion of subsequently deposited solution-derived electroceramics. The selective fictionalization is achieved through microcontact printing (v-CP) of self-assembled monolayer of the chemical octadecyltrichlorosilane on substrates of technical interest. Subsequent sol-gel deposition of ceramic oxides on these functionalized substrates, followed by lift-off from the monolayer, yields high quality, patterned oxide thin layers only on the unfunctionalized regions. A variety of micron- scale dielectric oxide devices have been fabricated using this process, with lateral resolution as fine as 0.5Lm. In this paper, we review the monolayer patterning and electrical behavior of several patterned electroceramic thin films, including Pb(Zr,Ti)03 [PZT], LiNb03, and Ta205. An applied device example is also presented in combination with selective MOCVD deposition of metal electrodes: integrated, fully monolayer-patterned Pt//PZT//PSi(Si(100) ferroelectric memory cells.

More Details
Results 176–188 of 188
Results 176–188 of 188