Publications

Results 1–50 of 254

Search results

Jump to search filters

The radiation instability of thermally stable nanocrystalline platinum gold

Journal of Materials Science

Schoell, Ryan; Barr, Christopher M.; Medlin, Douglas L.; Adams, David P.; Abdeljawad, Fadi; Hattar, Khalid

Recent experimentally validated alloy design theories have demonstrated nanocrystalline binary alloys that are stable against thermally induced grain growth. An open question is whether such thermal stability also translates to stability under irradiation. In this study, we investigate the response to heavy ion irradiation of a nanocrystalline platinum gold alloy that is known to be thermally stable from previous studies. Heavy ion irradiation was conducted at both room temperature and elevated temperatures on films of nanocrystalline platinum and platinum gold. Using scanning/transmission electron microscopy equipped with energy-dispersive spectroscopy and automated crystallographic orientation mapping, we observe substantial grain growth in the irradiated area compared to the controlled area beyond the range of heavy ions, as well as compositional redistribution under these conditions, and discuss mechanisms underpinning this instability. These findings highlight that grain boundary stability against one external stimulus, such as heat, does not always translate into grain boundary stability under other stimuli, such as displacement damage.

More Details

Application of the polyhedral template matching method for characterization of 2D atomic resolution electron microscopy images

Materials Characterization

Britton, Darcey; Hinojos, Alejandro; Hummel, Michelle H.; Adams, David P.; Medlin, Douglas L.

High-throughput image segmentation of atomic resolution electron microscopy data poses an ongoing challenge for materials characterization. In this paper, we investigate the application of the polyhedral template matching (PTM) method, a technique widely employed for visualizing three-dimensional (3D) atomistic simulations, to the analysis of two-dimensional (2D) atomic resolution electron microscopy images. This technique is complementary with other atomic resolution data reduction techniques, such as the centrosymmetry parameter, that use the measured atomic peak positions as the starting input. Furthermore, since the template matching process also gives a measure of the local rotation, the method can be used to segment images based on local orientation. We begin by presenting a 2D implementation of the PTM method, suitable for atomic resolution images. We then demonstrate the technique's application to atomic resolution scanning transmission electron microscopy images from close-packed metals, providing examples of the analysis of twins and other grain boundaries in FCC gold and martensite phases in 304 L austenitic stainless steel. Finally, we discuss factors, such as positional errors in the image peak locations, that can affect the accuracy and sensitivity of the structural determinations.

More Details

Normally closed thermally activated irreversible solid state erbium hydrides switches

Micro and Nano Engineering

Abere, Michael J.; Gallegos, Richard J.; Moorman, Matthew W.; Rodriguez, Mark A.; Kotula, Paul G.; Kellogg, Rick A.; Adams, David P.

A thermally driven, micrometer-scale switch technology has been created that utilizes the ErH3/Er2O3 materials system. The technology is comprised of novel thin film switches, interconnects, on-board micro-scale heaters for passive thermal environment sensing, and on-board micro-scale heaters for individualized switch actuation. Switches undergo a thermodynamically stable reduction/oxidation reaction leading to a multi-decade (>11 orders) change in resistance. The resistance contrast remains after cooling to room temperature, making them suitable as thermal fuses. An activation energy of 290 kJ/mol was calculated for the switch reaction, and a thermos-kinetic model was employed to determine switch times of 120 ms at 560 °C with the potential to scale to 1 ms at 680 °C.

More Details

Effects of carbon concentration on the local atomic structure of amorphous GST

Journal of Chemical Physics

Adams, David P.; Mcclure, Zachary D.; Appleton, Robert J.; Strachan, Alejandro

Ge-Sb-Te (GST) alloys are leading phase-change materials for data storage due to the fast phase transition between amorphous and crystalline states. Ongoing research aims at improving the stability of the amorphous phase to improve retention. This can be accomplished by the introduction of carbon as a dopant to Ge2Sb2Te5, which is known to alter the short- and mid-range structure of the amorphous phase and form covalently bonded C clusters, both of which hinder crystallization. The relative importance of these processes as a function of C concentration is not known. We used molecular dynamics simulation based on density functional theory to study how carbon doping affects the atomic structure of GST-C. Carbon doping results in an increase in tetrahedral coordination, especially of Ge atoms, and this is known to stabilize the amorphous phase. We observe an unexpected, non-monotonous trend in the number of tetrahedral bonded Ge with the amount of carbon doping. Our simulations show an increase in the number of tetrahedral bonded Ge up to 5 at.% C, after which the number saturates and begins to decrease above 14 at.% C. The carbon atoms aggregate into clusters, mostly in the form of chains and graphene flakes, leaving less carbon to disrupt the GST matrix at higher carbon concentrations. Different degrees of carbon clustering can explain divergent experimental results for recrystallization temperature for carbon doped GST.

More Details

Effects of diffusion barriers on reaction wave stability in Co/Al reactive multilayers

Journal of Applied Physics

Abere, Michael J.; Reeves, Robert V.; Sobczak, Catherine E.; Choi, Hyein; Adams, David P.

Bimetallic, reactive multilayers are uniformly structured materials composed of alternating sputter-deposited layers that may be ignited to produce self-propagating mixing and formation reactions. These nanolaminates are most commonly used as rapid-release heat sources. The specific chemical composition at each metal/metal interface determines the rate of mass transport in a mixing and formation reaction. The inclusion of engineered diffusion barriers at each interface will not only inhibit solid-state mixing but also may impede the self-propagating reactions by introducing instabilities to wavefront morphology. This work examines the effect of adding diffusion barriers on the propagation of reaction waves in Co/Al multilayers. The Co/Al system has been shown to exhibit a reaction propagation instability that is dependent on the bilayer thickness, which allows for the occurrence of unstable modes in otherwise stable designs from the inclusion of diffusion barriers. Based on the known stability criteria in the Co/Al multilayer system, the way in which the inclusion of diffusion barriers changes a multilayer's heat of reaction, thermal conductivity, and material mixing mechanisms can be determined. These factors, in aggregate, lead to changes in the wavefront velocity and stability.

More Details

Stability Criteria for Self-Propagating Reaction Waves in Co/Al Multilayers

ACS Applied Materials and Interfaces

Abere, Michael J.; Kittell, David E.; Sobczak, Catherine E.; Adams, David P.

The propagation of self-sustained formation reactions in sputter-deposited Co/Al multilayers is known to exhibit a design-dependent instability. Multilayers having thin bilayers (<55 nm period) exhibit stable propagating waves, whereas those with a larger period react unstably. The specific two-dimensional (2D) instability observed involves the transverse propagation of a band in front of a stalled front commonly referred to as a “spin band.” Previous finite-element studies have shown that these instabilities are thermodynamically driven by the forward conduction of heat away from the flame front. However, the magnitude of that loss is inherently tied to the bilayer design in traditional bimetallic multilayers, which couples any proposed stability criteria to a varying critical diffusion distance. This work utilizes a recently developed class of materials known as “inert-mediated reactive multilayers” to decouple the thermodynamic and kinetic contributions to propagating wave stability by reducing the stored chemical energy density in normally stable bilayer designs. By depositing an inert product phase (B2-CoAl) within the mid-plane of Co and Al reactant layers, spin instabilities arise as a function of both diluted volume and critical diffusion distance. From there, a stability criterion is determined for Co/Al multilayers based on enthalpy loss from the reaction zone, and its physical significance is explored.

More Details

Sputter-Deposited Mo Thin Films: Multimodal Characterization of Structure, Surface Morphology, Density, Residual Stress, Electrical Resistivity, and Mechanical Response

Integrating Materials and Manufacturing Innovation

Kalaswad, Matias; Custer, Joyce O.; Addamane, Sadhvikas J.; Khan, Ryan M.; Jauregui, Luis J.; Babuska, Tomas F.; Henriksen, Amelia; DelRio, Frank W.; Dingreville, Remi P.; Adams, David P.

Multimodal datasets of materials are rich sources of information which can be leveraged for expedited discovery of process–structure–property relationships and for designing materials with targeted structures and/or properties. For this data descriptor article, we provide a multimodal dataset of magnetron sputter-deposited molybdenum (Mo) thin films, which are used in a variety of industries including high temperature coatings, photovoltaics, and microelectronics. In this dataset we explored a process space consisting of 27 unique combinations of sputter power and Ar deposition pressure. Here, the phase, structure, surface morphology, and composition of the Mo thin films were characterized by x-ray diffraction, scanning electron microscopy, atomic force microscopy, and Rutherford backscattering spectrometry. Physical properties—namely, thickness, film stress and sheet resistance—were also measured to provide additional film characteristics and behaviors. Additionally, nanoindentation was utilized to obtain mechanical load-displacement data. The entire dataset consists of 2072 measurements including scalar values (e.g., film stress values), 2D linescans (e.g., x-ray diffractograms), and 3D imagery (e.g., atomic force microscopy images). An additional 1889 quantities, including film hardness, modulus, electrical resistivity, density, and surface roughness, were derived from the experimental datasets using traditional methods. Minimal analysis and discussion of the results are provided in this data descriptor article to limit the authors’ preconceived interpretations of the data. Overall, the data modalities are consistent with previous reports of refractory metal thin films, ensuring that a high-quality dataset was generated. The entirety of this data is committed to a public repository in the Materials Data Facility.

More Details

In situ investigation of ion irradiation-induced amorphization of (Ge2Sb2Te5)1−xCx [0 ≤ x ≤ 0.12]

Journal of Applied Physics

Lang, Eric; Clark, Trevor C.; Schoell, Ryan; Hattar, Khalid; Adams, David P.

Chalcogenide thin films that undergo reversible phase changes show promise for use in next-generation nanophotonics, microelectronics, and other emerging technologies. One of the many studied compounds, Ge 2 Sb 2 Te 5 , has demonstrated several useful properties and performance characteristics. However, the efficacy of benchmark Ge 2 Sb 2 Te 5 is restricted by amorphous phase thermal stability below ∼150 °C, limiting its potential use in high-temperature applications. In response, previous studies have added a fourth species (e.g., C) to sputter-deposited Ge 2 Sb 2 Te 5 , demonstrating improved thermal stability. Our current research confirms reported thermal stability enhancements and assesses the effects of carbon on crystalline phase radiation response. Through in situ transmission electron microscope irradiation studies, we examine the effect of C addition on the amorphization behavior of initially cubic and trigonal polycrystalline films irradiated using 2.8 MeV Au to various doses up to 1 × 10 15  cm −2 . It was found that increased C content reduces radiation tolerance of both cubic and trigonal phases.

More Details

Gradient nanostructuring via compositional means

Acta Materialia

Barrios Santos, Alejandro J.; Nathaniel, James E.; Monti, Joseph M.; Milne, Zachary M.; Adams, David P.; Hattar, Khalid M.; Medlin, Douglas L.; Dingreville, Remi P.; Boyce, Brad B.

Nanocrystalline metals are inherently unstable against thermal and mechanical stimuli, commonly resulting in significant grain growth. Also, while these metals exhibit substantial Hall-Petch strengthening, they tend to suffer from low ductility and fracture toughness. With regard to the grain growth problem, alloying elements have been employed to stabilize the microstructure through kinetic and/or thermodynamic mechanisms. And to address the ductility challenge, spatially-graded grain size distributions have been developed to facilitate heterogeneous deformation modes: high-strength at the surface and plastic deformation in the bulk. In the present work, we combine these two strategies and present a new methodology for the fabrication of gradient nanostructured metals via compositional means. We have demonstrated that annealing a compositionally stepwise Pt-Au film with a homogenous microstructure results in a film with a spatial microstructural gradient, exhibiting grains which can be twice as wide in the bulk compared to the outer surfaces. Additionally, phase-field modeling was employed for the comparison with experimental results and for further investigation of the competing mechanisms of Au diffusion and thermally induced grain growth. This fabrication method offers an alternative approach for developing the next generation of microstructurally stable gradient nanostructured films.

More Details

Identifying process-structure-property correlations related to the development of stress in metal thin films by high-throughput characterization and simulation-based methods

Kalaswad, Matias; Shrivastava, Ankit; Desai, Saaketh D.; Custer, Joyce O.; Khan, Ryan M.; Addamane, Sadhvikas J.; Monti, Joseph M.; Fowler, James E.; Rodriguez, Mark A.; DelRio, Frank W.; Kotula, Paul G.; D'Elia, Marta; Najm, H.N.; Dingreville, Remi P.; Boyce, Brad B.; Adams, David P.

The growth and nanothermite reaction of 2Al/3NiO multilayer thin films

Journal of Applied Physics

Abere, Michael J.; Beason, Matthew T.; Reeves, Robert V.; Rodriguez, Mark A.; Kotula, Paul G.; Sobczak, Catherine E.; Son, Steven F.; Yarrington, Cole D.; Adams, David P.

Nanothermite NiO-Al is a promising material system for low gas emission heat sources; yet, its reactive properties are highly dependent on material processing conditions. In the current study, sputter deposition is used to fabricate highly controlled nanolaminates comprised of alternating NiO and Al layers. Films having an overall stoichiometry of 2Al to 3NiO were produced with different bilayer thicknesses to investigate how ignition and self-sustained, high temperature reactions vary with changes to nanometer-scale periodicity and preheat conditions. Ignition studies were carried out with both hot plate and laser irradiation and compared to slow heating studies in hot-stage x-ray diffraction. Ignition behavior has bilayer thickness and heating rate dependencies. The 2Al/3NiO with λ ≤ 300 nm ignited via solid/solid diffusion mixing (activation energy, Ea = 49 ± 3 kJ/mole). Multilayers having λ≥ 500 nm required a more favorable mixing kinetics of solid/liquid dissolution into molten Al (Ea = 30 ± 4 kJ/mole). This solid/liquid dissolution Ea is a factor of 5 lower than that of the previously reported powder compacts due to the elimination of a passivating Al oxide layer present on the powder. The reactant mixing mechanism between 300 and 500 nm bilayer thicknesses was dependent on the ignition source's heating rate. The self-propagating reaction velocities of 2Al/3NiO multilayers varied from 0.4 to 2.5 m/s. Pre-heating nanolaminates to temperatures below the onset reaction temperatures associated with forming intermediate nickel aluminides at multilayer interfaces led to increased propagation velocities, whereas pre-heating samples above the onset temperatures inhibited subsequent attempts at laser ignition.

More Details

3D simulations of spinlike flames in Co/Al multilayers with enhanced conduction losses

Combustion and Flame

Kittell, David E.; Abere, Michael J.; Yarrington, Cole Y.; Adams, David P.

Reactive Co/Al multilayers are uniformly structured materials that may be ignited to produce rapid and localized heating. Prior studies varying the bilayer thickness (i.e., sum of two individual layers of Co and Al) have revealed different types of flame morphologies, including: (a) steady/planar, (b) wavy/periodic, and (c) transverse bands, originating in the flame front. These instabilities resemble the “spin waves” first observed in the early studies of solid combustion (i.e., Ti cylinder in a N2 atmosphere), and are likewise thought to be due to the balance of heat released by reaction and heat conduction forward into the unreacted multilayer. However, the multilayer geometry and three-dimensional (3D) edge effects are relatively unexplored. In this work, a new diffusion-limited reaction model for Co/Al multilayers was implemented in large, novel 3D finite element analysis (FEA) simulations, in order to study the origins of these spinlike flames. This reaction model builds upon previous work by introducing three new phase-dependent property models for: (1) the diffusion coefficient, (2) anisotropic thermal conductivity tensor, and (3) bulk heat capacity, as well as one additional model for the bilayer-dependent heat of reaction. These novel 3D simulations are the first to predict both steady and unsteady flames in Co/Al multilayers. Moreover, two unsteady modes of flame propagation are identified, which depend on the enhanced conduction losses with slower flames, as well as flame propagation around notched edges. Future work will consider the generality of the current modeling approach and also seek to define a more generalized set of stability criteria for additional multilayer systems.

More Details

Irradiation-induced grain boundary facet motion: In situ observations and atomic-scale mechanisms

Science Advances

Barr, Christopher M.; Chen, Elton Y.; Nathaniel, James E.; Lu, Ping L.; Adams, David P.; Dingreville, Remi P.; Boyce, Brad B.; Hattar, Khalid M.; Medlin, Douglas L.

Metals subjected to irradiation environments undergo microstructural evolution and concomitant degradation, yet the nanoscale mechanisms for such evolution remain elusive. Here, we combine in situ heavy ion irradiation, atomic resolution microscopy, and atomistic simulation to elucidate how radiation damage and interfacial defects interplay to control grain boundary (GB) motion. While classical notions of boundary evolution under irradiation rest on simple ideas of curvature-driven motion, the reality is far more complex. Focusing on an ion-irradiated Pt Σ3 GB, we show how this boundary evolves by the motion of 120° facet junctions separating nanoscale {112} facets. Our analysis considers the short- and mid-range ion interactions, which roughen the facets and induce local motion, and longer-range interactions associated with interfacial disconnections, which accommodate the intergranular misorientation. We suggest how climb of these disconnections could drive coordinated facet junction motion. These findings emphasize that both local and longer-range, collective interactions are important to understanding irradiation-induced interfacial evolution.

More Details

Germanium Telluride Chalcogenide Switches for RF Applications

Hummel, Gwendolyn H.; Patrizi, G.A.; Young, Andrew I.; Schroeder, Katlin S.; Ruyack, Alexander R.; Schiess, Adrian R.; Finnegan, Patrick S.; Adams, David P.; Nordquist, Christopher N.

This project developed prototype germanium telluride switches, which can be used in RF applications to improve SWAP (size, weight, and power) and signal quality in RF systems. These switches can allow for highly reconfigurable systems, including antennas, communications, optical systems, phased arrays, and synthetic aperture radar, which all have high impact on current National Security goals for improved communication systems and communication technology supremacy. The final result of the project was the demonstration of germanium telluride RF switches, which could act as critical elements necessary for a single chip RF communication system that will demonstrate low SWAP and high reconfigurability

More Details

Basic Research of Intrinsic, Tamper Indication Markings and Patterns Defined by Pulsed Laser Irradiation: 2015 Annual Report IACRO 13-5897I (DTRA Project Year End Report)

Adams, David P.

Information from 2015 annual report highlighting several tasks, including: Task 7: Research of microspectrophotometry for inspection and validation of laser color markings. Task 8: Investigate new laser fabrication techniques that produce color markings with improved corrosion resistance. Task 9: Research new methods for laser marking curved surfaces (and large areas). Task 10: Complete model simulations of laser-induced ripple formation-involves an ElectroMagnetic field solver.

More Details

Simultaneous thickness and thermal conductivity measurements of thinned silicon from 100 nm to 17 μ m

Applied Physics Letters

Scott, Ethan A.; Perez, Christopher P.; Saltonstall, Christopher B.; Adams, David P.; Carter Hodges, V.; Asheghi, Mehdi; Goodson, Kenneth E.; Hopkins, Patrick E.; Leonhardt, Darin L.; Ziade, Elbara Z.

Studies of size effects on thermal conductivity typically necessitate the fabrication of a comprehensive film thickness series. In this Letter, we demonstrate how material fabricated in a wedged geometry can enable similar, yet higher-throughput measurements to accelerate experimental analysis. Frequency domain thermoreflectance (FDTR) is used to simultaneously determine the thermal conductivity and thickness of a wedged silicon film for thicknesses between 100 nm and 17 μm by considering these features as fitting parameters in a thermal model. FDTR-deduced thicknesses are compared to values obtained from cross-sectional scanning electron microscopy, and corresponding thermal conductivity measurements are compared against several thickness-dependent analytical models based upon solutions to the Boltzmann transport equation. Our results demonstrate how the insight gained from a series of thin films can be obtained via fabrication of a single sample.

More Details

Variable Laser Ignition Pathways in Al/Pt Reactive Multilayers across 10 Decades of Pulse Duration

Journal of Physical Chemistry C

Abere, Michael J.; Yarrington, Cole D.; Kotula, Paul G.; Mcdonald, Joel P.; Adams, David P.

Pulsed laser irradiation is used to investigate the local initiation of rapid, self-propagating formation reactions in Al/Pt multilayers. The single pulse direct laser ignition of these 1.6 μm thick freestanding foils was characterized over 10 decades of pulse duration (10 ms to 150 fs). Finite element, reactive heat transport modeling of the near-threshold conditions has identified three distinct ignition pathways. For milli- to microsecond pulses, ignition occurs following sufficient absorption of laser energy to enable diffusion of Al and Pt between layers such that the heat released from the corresponding exothermic reaction overcomes conductive losses outside the laser-irradiated zone. When pulse duration is decreased into the nanosecond regime, heat is concentrated near the surface such that the Al locally melts, and a portion of the top-most bilayers react initially. The favorable kinetics and additional heat enable ignition. Further reducing pulse duration to hundreds of femtoseconds leads to a third ignition pathway. While much of the energy from these pulses is lost to ablation, the remaining heat beneath the crater can be sufficiently concentrated to drive a transverse self-propagating reaction, wherein the heat released from mixing at each interface occurs under kinetic conditions capable of igniting the subsequent layer.

More Details

The role of grain boundary character in solute segregation and thermal stability of nanocrystalline Pt-Au

Nanoscale

Barr, Christopher M.; Foiles, Stephen M.; Alkayyali, Malek; Mahmood, Yasir; Price, Patrick M.; Adams, David P.; Boyce, Brad B.; Abdeljawad, Fadi; Hattar, Khalid M.

Nanocrystalline (NC) metals suffer from an intrinsic thermal instability; their crystalline grains undergo rapid coarsening during processing treatments or under service conditions. Grain boundary (GB) solute segregation has been proposed to mitigate grain growth and thermally stabilize the grain structures of NC metals. However, the role of GB character in solute segregation and thermal stability of NC metals remains poorly understood. Herein, we employ high resolution microscopy techniques, atomistic simulations, and theoretical analysis to investigate and characterize the impact of GB character on segregation behavior and thermal stability in a model NC Pt-Au alloy. High resolution electron microscopy along with X-ray energy dispersive spectroscopy and automated crystallographic orientation mapping is used to obtain spatially correlated Pt crystal orientation, GB misorientation, and Au solute concentration data. Atomistic simulations of polycrystalline Pt-Au systems are used to reveal the plethora of GB segregation profiles as a function of GB misorientation and the corresponding impact on grain growth processes. With the aid of theoretical models of interface segregation, the experimental data for GB concentration profiles are used to extract GB segregation energies, which are then used to elucidate the impact of GB character on solute drag effects. Our results highlight the paramount role of GB character in solute segregation behavior. In broad terms, our approach provides future avenues to employ GB segregation as a microstructure design strategy to develop NC metallic alloys with tailored microstructures. This journal is

More Details

Thermal conductivity of (Ge2Sb2Te5)1–xCx phase change films

Journal of Applied Physics

Scott, Ethan A.; Ziade, Elbara Z.; Saltonstall, Christopher B.; McDonald, Anthony E.; Rodriguez, Mark A.; Hopkins, Patrick E.; Laros, James H.; Adams, David P.

Germanium–antimony–telluride has emerged as a nonvolatile phase change memory material due to the large resistivity contrast between amorphous and crystalline states, rapid crystallization, and cyclic endurance. Improving thermal phase stability, however, has necessitated further alloying with optional addition of a quaternary species (e.g., C). In this work, the thermal transport implications of this additional species are investigated using frequency-domain thermoreflectance in combination with structural characterization derived from x-ray diffraction and Raman spectroscopy. Specifically, the room temperature thermal conductivity and heat capacity of (Ge2Sb2Te5)1–xCx are reported as a function of carbon concentration (x ≤ 0:12) and anneal temperature (T ≤ 350 °C) with results assessed in reference to the measured phase, structure, and electronic resistivity. Phase stability imparted by the carbon comes with comparatively low thermal penalty as materials exhibiting similar levels of crystallinity have comparable thermal conductivity despite the addition of carbon. The additional thermal stability provided by the carbon does, however, necessitate higher anneal temperatures to achieve similar levels of structural order.

More Details

Complexion dictated thermal resistance with interface density in reactive metal multilayers

Physical Review B

Saltonstall, Christopher B.; Mcclure, Zachary D.; Abere, Michael J.; Guzman, David; Reeve, Samuel T.; Strachan, Alejandro; Kotula, Paul G.; Adams, David P.; Laros, James H.

Multilayers composed of aluminum (Al) and platinum (Pt) exhibit a nonmonotonic trend in thermal resistance with bilayer thickness as measured by time domain thermoreflectance. The thermal resistance initially increases with reduced bilayer thickness only to reach a maximum and then decrease with further shrinking of the multilayer period. These observations are attributed to the evolving impact of an intermixed amorphous complexion approximately 10 nm in thickness, which forms at each boundary between Al- and Pt-rich layers. Scanning transmission electron microscopy combined with energy dispersive x-ray spectroscopy find that the elemental composition of the complexion varies based on bilayer periodicity as does the fraction of the multilayer composed of this interlayer. These variations in complexion mitigate boundary scattering within the multilayers as shown by electronic transport calculations employing density-functional theory and nonequilibrium Green's functions on amorphous structures obtained via finite temperature molecular dynamics. The lessening of boundary scattering reduces the total resistance to thermal transport leading to the observed nonmonotonic trend thereby highlighting the central role of complexion on thermal transport within reactive metal multilayers.

More Details

Basic Research of Intrinsic Tamper indication Markings and Patterns defined by Pulsed Laser Irradiation

Adams, David P.

With our previous research, it was found that surface asperities or roughness must be present to create periodic surface structures upon laser exposure. In particular, an initial rough surface morphology (such as that found with a machined surface) provides multiple sites for light scattering, which underlies the formation of periodic ripple morphologies. Light scattering from a random surface creates patterns of periodic structures (with complex orientations) that could be used as intrinsic markings for tagging materials and equipment. Despite these initial findings, the fundamental mechanisms that give rise to periodic surface structures and their characteristic shapes were not identified in prior research.

More Details
Results 1–50 of 254
Results 1–50 of 254