Publications

3 Results

Search results

Jump to search filters

Triple Junction Segregation Dominates the Stability of Nanocrystalline Alloys

Nano Letters

Barnett, Annie K.; Hussein, Omar; Alghalayini, Maher; Hinojos, Alejandro; Nathaniel, James E.; Medlin, Douglas L.; Hattar, Khalid; Boyce, Brad B.; Abdeljawad, Fadi

We present large-scale atomistic simulations that reveal triple junction (TJ) segregation in Pt-Au nanocrystalline alloys in agreement with experimental observations. While existing studies suggest grain boundary solute segregation as a route to thermally stabilize nanocrystalline materials with respect to grain coarsening, here we quantitatively show that it is specifically the segregation to TJs that dominates the observed stability of these alloys. Our results reveal that doping the TJs renders them immobile, thereby locking the grain boundary network and hindering its evolution. In dilute alloys, it is shown that grain boundary and TJ segregation are not as effective in mitigating grain coarsening, as the solute content is not sufficient to dope and pin all grain boundaries and TJs. Our work highlights the need to account for TJ segregation effects in order to understand and predict the evolution of nanocrystalline alloys under extreme environments.

More Details

Application of the polyhedral template matching method for characterization of 2D atomic resolution electron microscopy images

Materials Characterization

Britton, Darcey; Hinojos, Alejandro; Hummel, Michelle H.; Adams, David P.; Medlin, Douglas L.

High-throughput image segmentation of atomic resolution electron microscopy data poses an ongoing challenge for materials characterization. In this paper, we investigate the application of the polyhedral template matching (PTM) method, a technique widely employed for visualizing three-dimensional (3D) atomistic simulations, to the analysis of two-dimensional (2D) atomic resolution electron microscopy images. This technique is complementary with other atomic resolution data reduction techniques, such as the centrosymmetry parameter, that use the measured atomic peak positions as the starting input. Furthermore, since the template matching process also gives a measure of the local rotation, the method can be used to segment images based on local orientation. We begin by presenting a 2D implementation of the PTM method, suitable for atomic resolution images. We then demonstrate the technique's application to atomic resolution scanning transmission electron microscopy images from close-packed metals, providing examples of the analysis of twins and other grain boundaries in FCC gold and martensite phases in 304 L austenitic stainless steel. Finally, we discuss factors, such as positional errors in the image peak locations, that can affect the accuracy and sensitivity of the structural determinations.

More Details
3 Results
3 Results