Publications

Results 2601–2650 of 99,299

Search results

Jump to search filters

Ensemble models for circuit topology estimation, fault detection and classification in distribution systems

Sustainable Energy, Grids and Networks

Rajendra Kurup, Aswathy; Summers, Adam; Bidram, Ali; Reno, Matthew J.; Martinez-Ramon, Manel

This paper presents a methodology for simultaneous fault detection, classification, and topology estimation for adaptive protection of distribution systems. The methodology estimates the probability of the occurrence of each one of these events by using a hybrid structure that combines three sub-systems, a convolutional neural network for topology estimation, a fault detection based on predictive residual analysis, and a standard support vector machine with probabilistic output for fault classification. The input to all these sub-systems is the local voltage and current measurements. A convolutional neural network uses these local measurements in the form of sequential data to extract features and estimate the topology conditions. The fault detector is constructed with a Bayesian stage (a multitask Gaussian process) that computes a predictive distribution (assumed to be Gaussian) of the residuals using the input. Since the distribution is known, these residuals can be transformed into a Standard distribution, whose values are then introduced into a one-class support vector machine. The structure allows using a one-class support vector machine without parameter cross-validation, so the fault detector is fully unsupervised. Finally, a support vector machine uses the input to perform the classification of the fault types. All three sub-systems can work in a parallel setup for both performance and computation efficiency. We test all three sub-systems included in the structure on a modified IEEE123 bus system, and we compare and evaluate the results with standard approaches.

More Details

Parallel Matrix Multiplication Using Voltage-Controlled Magnetic Anisotropy Domain Wall Logic

IEEE Journal on Exploratory Solid-State Computational Devices and Circuits

Zogbi, Nicholas; Liu, Samuel; Bennett, Christopher; Agarwal, Sapan; Marinella, Matthew J.; Incorvia, Jean A.C.; Xiao, Tianyao P.

The domain wall-magnetic tunnel junction (DW-MTJ) is a versatile device that can simultaneously store data and perform computations. These three-terminal devices are promising for digital logic due to their nonvolatility, low-energy operation, and radiation hardness. Here, we augment the DW-MTJ logic gate with voltage-controlled magnetic anisotropy (VCMA) to improve the reliability of logical concatenation in the presence of realistic process variations. VCMA creates potential wells that allow for reliable and repeatable localization of domain walls (DWs). The DW-MTJ logic gate supports different fanouts, allowing for multiple inputs and outputs for a single device without affecting the area. We simulate a systolic array of DW-MTJ multiply-accumulate (MAC) units with 4-bit and 8-bit precision, which uses the nonvolatility of DW-MTJ logic gates to enable fine-grained pipelining and high parallelism. The DW-MTJ systolic array provides comparable throughput and efficiency to state-of-the-art CMOS systolic arrays while being radiation-hard. These results improve the feasibility of using DW-based processors, especially for extreme-environment applications such as space.

More Details
Results 2601–2650 of 99,299
Results 2601–2650 of 99,299