Publications

35 Results

Search results

Jump to search filters

Techno-Economic Analysis: Best Practices and Assessment Tools

Kobos, Peter; Drennen, Thomas E.; Outkin, Alexander V.; Webb, Erik K.; Paap, Scott M.; Wiryadinata, Steven

A team at Sandia National Laboratories (SNL) recognized the growing need to maintain and organize the internal community of Techno - Economic Assessment analysts at the lab . To meet this need, an internal core team identified a working group of experienced, new, and future analysts to: 1) document TEA best practices; 2) identify existing resources at Sandia and elsewhere; and 3) identify gaps in our existing capabilities . Sandia has a long history of using techno - economic analyses to evaluate various technologies , including consideration of system resilience . Expanding our TEA capabilities will provide a rigorous basis for evaluating science, engineering and technology - oriented projects, allowing Sandia programs to quantify the impact of targeted research and development (R&D), and improving Sandia's competitiveness for external funding options . Developing this working group reaffirms the successful use of TEA and related techniques when evaluating the impact of R&D investments, proposed work, and internal approaches to leverage deep technical and robust, business - oriented insights . The main findings of this effort demonstrated the high - impact TEA has on future cost, adoption for applications and impact metric forecasting insights via key past exemplar applied techniques in a broad technology application space . Recommendations from this effort include maintaining and growing the best practices approaches when applying TEA, appreciating the tools (and their limits) from other national laboratories and the academic community, and finally a recognition that more proposals and R&D investment decision s locally at Sandia , and more broadly in the research community from funding agencies , require TEA approaches to justify and support well thought - out project planning.

More Details

Hybrid Integration of III-V Solar Microcells for High-Efficiency Concentrated Photovoltaic Modules

IEEE Journal of Selected Topics in Quantum Electronics

Tauke-Pedretti, Anna; Cederberg, Jeffrey G.; Cruz-Campa, Jose L.; Alford, Charles; Sanchez, Carlos A.; Sweatt, W.C.; Jared, Bradley H.; Keeler, Gordon A.; Paap, Scott M.; Okandan, Murat; Li, Lan; Li, Duanhui; Gu, Tian; Hu, Juejun; Nielson, Gregory N.

The design, fabrication, and performance of InGaAs and InGaP/GaAs microcells are presented. These cells are integrated with a Si wafer providing a path for insertion in hybrid concentrated photovoltaic modules. Comparisons are made between bonded cells and cells fabricated on their native wafer. The bonded cells showed no evidence of degradation in spite of the integration process that involved significant processing including the removal of the III-V substrate.

More Details

Waste Water for Power Generation via Energy Efficient Selective Silica Separations

Nenoff, Tina M.; Brady, Patrick V.; Sasan, Koroush; Paap, Scott M.; Heimer, Brandon W.; Krumhansl, James L.; Howe, Kerry; Stoll, Zachary; Stomp, James

Silica is ubiquitous in produced and industrial waters, and plays a major disruptive role in water recycle. Herein we have investigated the use of mixed oxides for the removal of silica from these waters, and their incorporation into a low cost and low energy water purification process. High selectivity hydrotalcite (HTC, (Mg6Al2(OH)16(CO3)•4H2O)), is combined in series with high surface area active alumina (AA, (Al2O3)) as the dissolved silica removal media. Batch test results indicated that combined HTC/AA is a more effective method for removing silica from industrial cooling tower wasters (CTW) than using HTC or AA separately. The silica uptake via ion exchange on the mixed oxides was confirmed by Fourier transform infrared (FTIR), and Energy dispersive spectroscopy (EDS). Furthermore, HTC/AA effectively removes silica from CTW even in the presence of large concentrations of competing anions, such as Cl-, NO3- HCO3-, CO32- and SO42-. Similar to batch tests, Single Path Flow Through (SPFT) tests with sequential HTC/AA column filtration has very high silica removal too. Technoeconomic Analysis (TEA) was simultaneously performed for cost comparisons to existing silica removal technologies.

More Details

Process Design and Techno-economic Analysis for Materials to Treat Produced Waters

Industrial and Engineering Chemistry Research

Heimer, Brandon W.; Paap, Scott M.; Sasan, Koroush; Brady, Patrick V.; Nenoff, Tina M.

Significant quantities of water are produced during enhanced oil recovery making these “produced water” streams attractive candidates for treatment and reuse. However, high concentrations of dissolved silica raise the propensity for fouling. In this paper, we report the design and economic analysis for a new ion exchange process using calcined hydrotalcite (HTC) to remove silica from water. This process improves upon known technologies by minimizing sludge product, reducing process fouling, and lowering energy use. Process modeling outputs included raw material requirements, energy use, and the minimum water treatment price (MWTP). Monte Carlo simulations quantified the impact of uncertainty and variability in process inputs on MWTP. These analyses showed that cost can be significantly reduced if the HTC materials are optimized. Specifically, R&D improving HTC reusability, silica binding capacity, and raw material price can reduce MWTP by 40%, 13%, and 20%, respectively. Optimizing geographic deployment further improves cost competitiveness.

More Details

Next Generation Photovoltaic Technologies For High-Performance Remote Power Generation (Final Report)

Lentine, Anthony L.; Nielson, Greg N.; Riley, Daniel; Okandan, M.; Sweatt, W.C.; Jared, Bradley H.; Resnick, Paul; Kim, B.; Kratochvil, Jay; Anderson, B.J.; Cruz-Campa, J.L.; Gupta, Vipin P.; Tauke-Pedretti, Anna; Cederberg, J.G.; Paap, Scott M.; Sanchez, Carlos A.; Nordquist, Christopher D.; Saavedra, Michael P.; Ballance, Mark; Nguyen, J.; Alford, Charles; Nelson, John S.; Lavin, Judith M.; Clews, P.; Pluym, Tammy; Wierer, J.; Wang, George T.; Biefeld, Robert M.; Luk, Ting S.; Brener, Igal; Granata, J.; Aguirre, Brandon A.; Haney, Mike; Agrawal, Gautam; Gu, Tian

A unique, micro-scale architecture is proposed to create a novel hybrid concentrated photovoltaic system. Micro-scale (sub-millimeter wide), multi-junction cells are attached to a large-area silicon cell backplane (several inches wide) that can optimally collect both direct and diffuse light. By using multi- junction III-V cells, we can get the highest possible efficiency of the direct light input. In addition, by collecting the diffuse light in the large-area silicon cell, we can produce power on cloudy days when the concentrating cells would have minimal output. Through the use of micro-scale cells and lenses, the overall assembly will provide higher efficiency than conventional concentrators and flat plates, while keeping the form factor of a flat plate module. This report describes the hybrid concept, the design of a prototype, including the PV cells and optics, and the experimental results.

More Details

Microsystem Enabled Photovoltaics

Nielson, Gregory; Cruz Campa, Jose L.; Okandan, Murat; Lentine, Anthony L.; Sweatt, W.C.; Gupta, Vipin P.; Tauke-Pedretti, Anna; Jared, Bradley H.; Resnick, Paul; Cederberg, Jeffrey; Paap, Scott M.; Sanchez, Carlos A.; Biefeld, Robert M.; Langlois, Eric; Yang, Benjamin; Koleske, Daniel; Wierer, Jonathan; Miller, William K.; Elisberg, Brenton; Foulk, James W.; Luna, Ian; Saavedra, Michael P.; Alford, Charles; Ballance, Mark; Wiwi, Michael; Samora, Sally; Chavez, Julie; Pipkin, Jennifer R.; Nguyen, Janet; Anderson, Ben; Gu, Tian; Agrawal, Gautum; Nelson, Jeffrey

Abstract not provided.

Novel Metal-Organic Frameworks for Efficient Stationary Sources via Oxyfuel Combustion

Nenoff, Tina M.; Gallis, Dorina F.S.; Parkes, Marie V.; Greathouse, Jeffery A.; Rodriguez, Mark A.; Paap, Scott M.; Williams, Timothy C.; Shaddix, Christopher R.

Oxy-fuel combustion is a well-known approach to improve the heat transfer associated with stationary energy processes. Its overall penetration into industrial and power markets is constrained by the high cost of existing air separation technologies for generating oxygen. Cryogenic air separation is the most widely used technology for generating oxygen but is complex and expensive. Pressure swing adsorption is a competing technology that uses activated carbon, zeolites and polymer membranes for gas separations. However, it is expensive and limited to moderate purity O2 . MOFs are cutting edge materials for gas separations at ambient pressure and room temperature, potentially revolutionizing the PSA process and providing dramatic process efficiency improvements through oxy-fuel combustion. This LDRD combined (1) MOF synthesis, (2) gas sorption testing, (3) MD simulations and crystallography of gas siting in pores for structure-property relationship, (4) combustion testing and (5) technoeconomic analysis to aid in real-world implementation.

More Details

Deployment of feasible routes to renewable jet-fuel with an emphasis on the Norwegian landscape

Proposed Journal Article, unpublished

Sandquist, Judit; Kempegowda, Rajesh S.; Paap, Scott M.; George, Anthe G.; Bugge, Mette; Matas, Berta G.

Techno-economic performances of Norwegian biojet fuel production via the Alcoholto- Jet and Fischer-Tropsch synthetic paraffinic kerosene routes were estimated based on adaptations of available literature data to Norwegian conditions. This paper reviews the deployment of feasible routes to sustainable jet fuel production for the short-to-medium term timeframe (2020-2025), with an emphasis on the Norwegian landscape. Given the fact that there are serious concerns regarding the availability and the sustainability of large-scale biofuels production both from oil seed plants and carbohydrates (sugars and starches) as well as the unsuitability of the Norwegian climate for oil seed or sugar/starch plant cultivation, only biojet fuels produced from lignocellulosic resources are considered. The short-to-medium term implies certified or near certified fuels. The most promising and feasible alternatives for Norwegian biojet fuel production are hence limited to FT-SPK and ATJ. The results suggest that, from a techno-economic point of view, production of jet fuel via the gasification-FT route is more favorable than the alcohol to jet fuel route. This is attributed to the inclusion of the alcohol production step. Feedstock price is the main operating cost for both of the routes. The current cost of production of jet fuel under Norwegian conditions for gasification FT route is estimated between 43 USD/GJ and 47.4 USD/GJ, and for the ATJ route, between 54 USD/GJ and 60 USD/GJ.

More Details

Flat plate concentrators with large acceptance angle enabled by micro cells and mini lenses: performance evaluation

Cruz-Campa, Jose L.; Anderson, Benjamin J.; Gupta, Vipin P.; Tauke-Pedretti, Anna; Cederberg, Jeffrey G.; Paap, Scott M.; Sanchez, Carlos A.; Nordquist, Christopher D.; Nielson, Gregory N.; Saavedra, Michael P.; Ballance, Mark; Nguyen, Janet; Alford, Charles; Riley, Daniel; Okandan, Murat; Lentine, Anthony L.; Sweatt, W.C.; Jared, Bradley H.; Resnick, Paul; Kratochvil, Jay A.

Abstract not provided.

Cost analysis for flat-plate concentrators employing microscale photovoltaic cells

Conference Record of the IEEE Photovoltaic Specialists Conference

Paap, Scott M.; Nelson, Jeffrey; Gupta, Vipin P.; Cruz-Campa, Jose L.; Okandan, Murat; Sweatt, W.C.; Jared, Bradley H.; Anderson, Benjamin J.; Nielson, Gregory N.; Tauke-Pedretti, Anna

Microsystems Enabled Photovoltaics (MEPV) is a relatively new field that uses microsystems tools and manufacturing techniques familiar to the semiconductor industry to produce microscale photovoltaic cells. The miniaturization of these PV cells creates new possibilities in system designs that may be able to achieve the US Department of Energy (DOE) price target of $1/Wp by 2020 for utility-scale electricity generation. In this article, we introduce analytical tools and techniques to estimate the costs associated with a concentrating photovoltaic system that uses microscale photovoltaic cells and miniaturized optics. The overall model comprises the component costs associated with the PV cells, concentrating optics, balance of systems, installation, and operation. Estimates include profit margin and are discussed in the context of current and projected prices for non-concentrating and concentrating photovoltaics. Our analysis indicates that cells with a width of between 100 and 300 μm will minimize the module costs of the initial design within the range of concentration ratios considered. To achieve the DOE price target of $1/Wp by 2020, module efficiencies over 35% will likely be necessary. © 2013 IEEE.

More Details

Cost analysis for flat-plate concentrators employing microscale photovoltaic cells

Conference Record of the IEEE Photovoltaic Specialists Conference

Paap, Scott M.; Nelson, Jeffrey; Gupta, Vipin P.; Cruz-Campa, Jose L.; Okandan, Murat; Sweatt, W.C.; Jared, Bradley H.; Anderson, Benjamin J.; Nielson, Gregory N.; Tauke-Pedretti, Anna

Microsystems Enabled Photovoltaics (MEPV) is a relatively new field that uses microsystems tools and manufacturing techniques familiar to the semiconductor industry to produce microscale photovoltaic cells. The miniaturization of these PV cells creates new possibilities in system designs that may be able to achieve the US Department of Energy (DOE) price target of $1/Wp by 2020 for utility-scale electricity generation. In this article, we introduce analytical tools and techniques to estimate the costs associated with a concentrating photovoltaic system that uses microscale photovoltaic cells and miniaturized optics. The overall model comprises the component costs associated with the PV cells, concentrating optics, balance of systems, installation, and operation. Estimates include profit margin and are discussed in the context of current and projected prices for non-concentrating and concentrating photovoltaics. Our analysis indicates that cells with a width of between 100 and 300 μm will minimize the module costs of the initial design within the range of concentration ratios considered. To achieve the DOE price target of $1/Wp by 2020, module efficiencies over 35% will likely be necessary. © 2013 IEEE.

More Details

Advanced compound semiconductor and silicon fabrication techniques for next-generation solar power systems

ECS Transactions

Nielson, Gregory N.; Okandan, Murat; Cruz-Campa, Jose L.; Gupta, Vipin P.; Resnick, Paul; Sanchez, Carlos A.; Paap, Scott M.; Kim, B.; Sweatt, W.C.; Lentine, Anthony L.; Cederberg, Jeffrey G.; Tauke-Pedretti, Anna; Jared, B.H.; Anderson, Benjamin J.; Biefeld, Robert M.; Nelson, J.S.

Microsystem technologies have the potential to significantly improve the performance, reduce the cost, and extend the capabilities of solar power systems. These benefits are possible due to a number of significant beneficial scaling effects within solar cells, modules, and systems that are manifested as the size of solar cells decrease to the sub-millimeter range. To exploit these benefits, we are using advanced fabrication techniques to create solar cells from a variety of compound semiconductors and silicon that have lateral dimensions of 250 - 1000 μm and are 1 - 20 μm thick. These fabrication techniques come out of relatively mature microsystem technologies such as integrated circuits (IC) and microelectromechanical systems (MEMS) which provide added supply chain and scale-up benefits compared to even incumbent PV technologies. © The Electrochemical Society.

More Details

Guiding Optimal Biofuels: A Comparative Analysis of the Biochemical Production of Ethanol and Fatty Acid Ethyl Esters from Switchgrass

Paap, Scott M.; West, Todd H.; Manley, Dawn K.; Dibble, Dean C.; Simmons, Blake

In the current study, processes to produce either ethanol or a representative fatty acid ethyl ester (FAEE) via the fermentation of sugars liberated from lignocellulosic materials pretreated in acid or alkaline environments are analyzed in terms of economic and environmental metrics. Simplified process models are introduced and employed to estimate process performance, and Monte Carlo analyses were carried out to identify key sources of uncertainty and variability. We find that the near-term performance of processes to produce FAEE is significantly worse than that of ethanol production processes for all metrics considered, primarily due to poor fermentation yields and higher electricity demands for aerobic fermentation. In the longer term, the reduced cost and energy requirements of FAEE separation processes will be at least partially offset by inherent limitations in the relevant metabolic pathways that constrain the maximum yield potential of FAEE from biomass-derived sugars.

More Details

Biochemical production of ethanol and water-immiscible biofuel from lignocellulosic biomass: A comparative analysis of environmental and economic performance

12AIChE - 2012 AIChE Spring Meeting and 8th Global Congress on Process Safety, Conference Proceedings

Paap, Scott M.

Two separate processes to produce either ethanol or a fatty acid ethyl ester (FAEE) - identical to oil-derived biodiesel - via the fermentation of sugars obtained from lignocellulosic materials were analyzed in terms of economic and environmental metrics. Simplified process models were introduced and employed to estimate fuel production, net energy consumption, minimum fuel selling price, and water consumption for both processes. Monte Carlo analyses were carried out to identify the parameters governing process performance, and an analysis of the impact of potential improvements to the FAEE process was performed. The results of the analyses, capturing both the current state of technology development as well as paths to improve the performance of the FAEE process relative to that for producing ethanol, are presented. This is an abstract of a paper presented at the 2012 AIChE Spring National Meeting and 8th Global Congress on Process Safety (Houston, TX 4/1-5/2012).

More Details
35 Results
35 Results