Publications

90 Results

Search results

Jump to search filters

Mapping photovoltaic performance with nanoscale resolution

Progress in Photovoltaics: Research and Applications

Cruz-Campa, Jose L.; Aguirre, Brandon A.; Kutes, Yasemin; Bosse, James L.; Zubia, David; Huey, Bryan D.

Photo-conductive AFM spectroscopy ('pcAFMs') is proposed as a high-resolution approach for investigating nanostructured photovoltaics, uniquely providing nanoscale maps of photovoltaic (PV) performance parameters such as the short circuit current, open circuit voltage, maximum power, or fill factor. The method is demonstrated with a stack of 21 images acquired during in situ illumination of micropatterned polycrystalline CdTe/CdS, providing more than 42 000 I/V curves spatially separated by ~5 nm. For these CdTe/CdS microcells, the calculated photoconduction ranges from 0 to 700 picoSiemens (pS) upon illumination with ~1.6 suns, depending on location and biasing conditions. Mean short circuit currents of 2 pA, maximum powers of 0.5 pW, and fill factors of 30% are determined. The mean voltage at which the detected photocurrent is zero is determined to be 0.7 V. Significantly, enhancements and reductions in these more commonly macroscopic PV performance metrics are observed to correlate with certain grains and grain boundaries, and are confirmed to be independent of topography. These results demonstrate the benefits of nanoscale resolved PV functional measurements, reiterate the importance of microstructural control down to the nanoscale for 'PV devices, and provide a widely applicable new approach for directly investigating PV materials.

More Details

Towards model-guided defect reduction in Cd1-xZnxTe/CdS solar cells: Development of molecular dynamics models

2014 IEEE 40th Photovoltaic Specialist Conference, PVSC 2014

Zhou, Xiaowang; Chavez, Jose J.; Cruz-Campa, Jose L.; Zubia, David

Cd1-xZnxTe/CdS solar cells are currently limited by material defects. While nano-structuring promises further defect reductions, the materials synthesis and characterization become more challenging. Molecular dynamics models capable of growth simulations enable defects to be explored without assumptions, and can therefore guide nanoscale experiments. Such models are difficult to develop, and are not routinely available in literature for semiconductor compounds. To fill this gap, we have developed growth simulation enabling Stillinger-Weber and bond-order potentials. These new models begin to enable molecular dynamics to be used to explore nano-structured Cd1-xZnxTe/CdS solar cells with reduced defects.

More Details

Cost analysis of flat-plate concentrators employing microscale photovoltaic cells for high energy per unit area applications

2014 IEEE 40th Photovoltaic Specialist Conference, PVSC 2014

Paap, Scott; Gupta, Vipin P.; Tauke-Pedretti, Anna; Resnick, Paul; Sanchez, Carlos A.; Nielson, Gregory N.; Cruz-Campa, Jose L.; Jared, Bradley H.; Nelson, Jeffrey; Okandan, Murat; Sweatt, W.C.

Microsystems Enabled Photovoltaics (MEPV) is a relatively new field that uses microsystems tools and manufacturing techniques familiar to the semiconductor industry to produce microscale photovoltaic cells. The miniaturization of these PV cells creates new possibilities in system designs that can be used to reduce costs, enhance functionality, improve reliability, or some combination of all three. In this article, we introduce analytical tools and techniques to estimate the costs associated with a hybrid concentrating photovoltaic system that uses multi-junction microscale photovoltaic cells and miniaturized concentrating optics for harnessing direct sunlight, and an active c-Si substrate for collecting diffuse sunlight. The overall model comprises components representing costs and profit margin associated with the PV cells, concentrating optics, balance of systems, installation, and operation. This article concludes with an analysis of the component costs with particular emphasis on the microscale PV cell costs and the associated tradeoffs between cost and performance for the hybrid CPV design.

More Details

Surface plasmon polariton enhanced ultrathin nano-structured CdTe solar cell

Optics Express

Cruz-Campa, Jose L.; Frank, Ian W.; Campione, Salvatore; Fofang, Nche T.

We demonstrate numerically that two-dimensional arrays of ultrathin CdTe nano-cylinders on Ag can serve as an effective broadband anti-reflection structure for solar cell applications. Such devices exhibit strong absorption properties, mainly in the CdTe semiconductor regions, and can produce short-circuit current densities of 23.4 mA/cm2, a remarkable number in the context of solar cells given the ultrathin dimensions of our nano-cylinders. The strong absorption is enabled via excitation of surface plasmon polaritons (SPPs) under plane wave incidence. In particular, we identified the key absorption mechanism as enhanced fields of the SPP standing waves residing at the interface of CdTe nano-cylinders and Ag. We compare the performance of Ag, Au, and Al substrates, and observe significant improvement when using Ag, highlighting the importance of using low-loss metals. Although we use CdTe here, the proposed approach is applicable to other solar cell materials with similar absorption properties. © 2014 Optical Society of America.

More Details

Defect localization, characterization and reliability assessment in emerging photovoltaic devices

Cruz-Campa, Jose L.; Haase, Gaddi S.; Colr, Edward I.; Tangyunyong, Paiboon; Okandan, Murat; Nielson, Gregory N.

Microsystems-enabled photovoltaics (MEPV) can potentially meet increasing demands for light-weight, portable, photovoltaic solutions with high power density and efficiency. The study in this report examines failure analysis techniques to perform defect localization and evaluate MEPV modules. CMOS failure analysis techniques, including electroluminescence, light-induced voltage alteration, thermally-induced voltage alteration, optical beam induced current, and Seabeck effect imaging were successfully adapted to characterize MEPV modules. The relative advantages of each approach are reported. In addition, the effects of exposure to reverse bias and light stress are explored. MEPV was found to have good resistance to both kinds of stressors. The results form a basis for further development of failure analysis techniques for MEPVs of different materials systems or multijunction MEPVs. The incorporation of additional stress factors could be used to develop a reliability model to generate lifetime predictions for MEPVs as well as uncover opportunities for future design improvements.

More Details

Failure analysis techniques for microsystems-enabled photovoltaics

IEEE Journal of Photovoltaics

Cruz-Campa, Jose L.; Haase, Gaddi S.; Colr, Edward I.; Tangyunyong, Paiboon; Resnick, Paul; Okandan, Murat; Nielson, Gregory N.

Microsystems-enabled photovoltaics (MEPV) has great potential to meet the increasing demands for light-weight, photovoltaic solutions with high power density and efficiency. This paper describes effective failure analysis techniques to localize and characterize nonfunctional or underperforming MEPV cells. The defect localization methods such as electroluminescence under forward and reverse bias, as well as optical beam induced current using wavelengths above and below the device band gap, are presented. The current results also show that the MEPV has good resilience against degradation caused by reverse bias stresses. © 2013 IEEE.

More Details

Flat plate concentrators with large acceptance angle enabled by micro cells and mini lenses: performance evaluation

Cruz-Campa, Jose L.; Anderson, Benjamin J.; Gupta, Vipin P.; Tauke-Pedretti, Anna; Cederberg, Jeffrey G.; Paap, Scott M.; Sanchez, Carlos A.; Nordquist, Christopher D.; Nielson, Gregory N.; Saavedra, Michael P.; Ballance, Mark; Nguyen, Janet; Alford, Charles; Riley, Daniel; Okandan, Murat; Lentine, Anthony L.; Sweatt, W.C.; Jared, Bradley H.; Resnick, Paul; Kratochvil, Jay A.

Abstract not provided.

Fault localization and failure modes in microsystems-enabled photovoltaic devices

IEEE International Reliability Physics Symposium Proceedings

Cruz-Campa, Jose L.; Haase, Gaddi S.; Tangyunyong, Paiboon; Colr, Edward I.; Pimentel, Alejandro A.; Resnick, Paul; Okandan, Murat; Nielson, Gregory N.

Microsystems-enabled photovoltaic (MEPV) technology is a promising approach to lower the cost of solar energy to competitive levels. This paper describes current development efforts to leverage existing silicon integrated circuit (IC) failure analysis (FA) techniques to study MEPV devices. Various FA techniques such as light emission microscopy and laser-based fault localization were used to identify and characterize primary failure modes after fabrication and packaging. The FA results provide crucial information used in provide corrective actions and improve existing MEPV fabrication techniques. © 2013 IEEE.

More Details

Fault localization and failure modes in microsystems-enabled photovoltaic devices

IEEE International Reliability Physics Symposium Proceedings

Yang, Benjamin B.; Cruz-Campa, Jose L.; Haase, Gaddi S.; Tangyunyong, Paiboon; Colr, Edward I.; Pimentel, Alejandro A.; Resnick, Paul; Okandan, Murat; Nielson, Gregory N.

Microsystems-enabled photovoltaic (MEPV) technology is a promising approach to lower the cost of solar energy to competitive levels. This paper describes current development efforts to leverage existing silicon integrated circuit (IC) failure analysis (FA) techniques to study MEPV devices. Various FA techniques such as light emission microscopy and laser-based fault localization were used to identify and characterize primary failure modes after fabrication and packaging. The FA results provide crucial information used in provide corrective actions and improve existing MEPV fabrication techniques. © 2013 IEEE.

More Details

Ultrathin and micro-sized solar cell performance optimization via simulations

Progress in Photovoltaics: Research and Applications

Cruz-Campa, Jose L.; Nielson, Gregory N.; Resnick, Paul; Okandan, Murat; Young, Ralph W.; Gupta, Vipin P.

Back-contacted, ultrathin (<10 μm), and submillimeter-sized solar cells made with microsystem tools are a new type of cell that has not been optimized for performance. The literature reports efficiencies up to 15% using thicknesses of 14 μm and cell sizes of 250 μm. In this paper, we present the design, conditions, and fabrication parameters necessary to optimize these devices. The optimization was performed using commercial simulation tools from the microsystems arena. A systematic variation of the different parameters that influence the performance of the cell was accomplished. The researched parameters were resistance, Shockley-Read-Hall (SRH) lifetime, contact separation, implant characteristics (size, dosage, energy, and ratio between the species), contact size, substrate thickness, surface recombination, and light concentration. The performance of the cell was measured with efficiency, open-circuit voltage, and short-circuit current. Among all the parameters investigated, surface recombination and SRH lifetime proved to be the most important. Through completing the simulations, an optimized concept solar cell design was introduced for two scenarios: high and low quality materials/passivation. Simulated efficiencies up to 23.4% (1 sun) and 26.7% (100 suns) were attained for 20-μm-thick devices. Copyright © 2012 John Wiley & Sons, Ltd. Back-contacted, ultrathin (<10 μm), and submillimeter-sized solar cells made with microsystem tools are a new type of cell that has not been optimized for performance. In this paper, we present the design conditions and fabrication parameters necessary to optimize these devices via simulations. Through completing the simulations, an optimized concept solar cell design was introduced for two scenarios: high and low quality materials/passivation. Simulated efficiencies up to 23.4% (1 sun) and 26.7% (100 suns) were attained for 20-μm-thick devices. Copyright © 2012 John Wiley & Sons, Ltd.

More Details

Cost analysis for flat-plate concentrators employing microscale photovoltaic cells

Conference Record of the IEEE Photovoltaic Specialists Conference

Paap, Scott M.; Nelson, Jeffrey; Gupta, Vipin P.; Cruz-Campa, Jose L.; Okandan, Murat; Sweatt, W.C.; Jared, Bradley H.; Anderson, Benjamin J.; Nielson, Gregory N.; Tauke-Pedretti, Anna

Microsystems Enabled Photovoltaics (MEPV) is a relatively new field that uses microsystems tools and manufacturing techniques familiar to the semiconductor industry to produce microscale photovoltaic cells. The miniaturization of these PV cells creates new possibilities in system designs that may be able to achieve the US Department of Energy (DOE) price target of $1/Wp by 2020 for utility-scale electricity generation. In this article, we introduce analytical tools and techniques to estimate the costs associated with a concentrating photovoltaic system that uses microscale photovoltaic cells and miniaturized optics. The overall model comprises the component costs associated with the PV cells, concentrating optics, balance of systems, installation, and operation. Estimates include profit margin and are discussed in the context of current and projected prices for non-concentrating and concentrating photovoltaics. Our analysis indicates that cells with a width of between 100 and 300 μm will minimize the module costs of the initial design within the range of concentration ratios considered. To achieve the DOE price target of $1/Wp by 2020, module efficiencies over 35% will likely be necessary. © 2013 IEEE.

More Details

Comparison of beam-based failure analysis techniques for microsystems-enabled photovoltaics

Conference Proceedings from the International Symposium for Testing and Failure Analysis

Yang, Benjamin B.; Cruz-Campa, Jose L.; Haase, Gaddi S.; Colr, Edward I.; Tangyunyong, Paiboon; Okandan, Murat; Nielson, Gregory N.

Microsystems-enabled photovoltaics (MEPVs) are microfabricated arrays of thin and efficient solar cells. The scaling effects enabled by this technique results in great potential to meet increasing demands for light-weight photovoltaic solutions with high power density. This paper covers failure analysis techniques used to support the development of MEPVs with a focus on the laser beam-based methods of LIVA, TIVA, OBIC, and SEI. Each FA technique is useful in different situations, and the examples in this paper show the relative advantages of each method for the failure analysis of MEPVs. Copyright © 2013 ASM International® All rights reserved.

More Details

Cost analysis for flat-plate concentrators employing microscale photovoltaic cells

Conference Record of the IEEE Photovoltaic Specialists Conference

Paap, Scott M.; Nelson, Jeffrey; Gupta, Vipin P.; Cruz-Campa, Jose L.; Okandan, Murat; Sweatt, W.C.; Jared, Bradley H.; Anderson, Benjamin J.; Nielson, Gregory N.; Tauke-Pedretti, Anna

Microsystems Enabled Photovoltaics (MEPV) is a relatively new field that uses microsystems tools and manufacturing techniques familiar to the semiconductor industry to produce microscale photovoltaic cells. The miniaturization of these PV cells creates new possibilities in system designs that may be able to achieve the US Department of Energy (DOE) price target of $1/Wp by 2020 for utility-scale electricity generation. In this article, we introduce analytical tools and techniques to estimate the costs associated with a concentrating photovoltaic system that uses microscale photovoltaic cells and miniaturized optics. The overall model comprises the component costs associated with the PV cells, concentrating optics, balance of systems, installation, and operation. Estimates include profit margin and are discussed in the context of current and projected prices for non-concentrating and concentrating photovoltaics. Our analysis indicates that cells with a width of between 100 and 300 μm will minimize the module costs of the initial design within the range of concentration ratios considered. To achieve the DOE price target of $1/Wp by 2020, module efficiencies over 35% will likely be necessary. © 2013 IEEE.

More Details

Resistance considerations for stacked small multi-junction photovoltaic cells

Conference Record of the IEEE Photovoltaic Specialists Conference

Cederberg, Jeffrey G.; Nielson, Gregory N.; Cruz-Campa, Jose L.; Sanchez, Carlos A.; Alford, Charles; Okandan, Murat; Skogen, Erik J.; Lentine, Anthony L.

In this paper we propose a stacked multi-junction solar cell design that allows the intimate contact of the individual cells while maintaining low resistive losses. The cell design is presented using an InGaP and GaAs multi-junction cell as an illustrative example. However, the methodologies presented in this paper can be applied to other III-V cell types including InGaAs and InGaAsP cells. The main benefits of the design come from making small cells, on the order of 2×10-3 cm2. Simulations showed that series resistances should be kept to less than 5 ω for devices up to 400 μm in diameter to keep resistance power losses to less than 1%. Low resistance AuBe/Ni/Au ohmic contacts to n-type InGaP are also demonstrated with contact resistivity of 5×10-6 ωcm-2 when annealed at 420°C. © 2013 IEEE.

More Details

Advanced compound semiconductor and silicon fabrication techniques for next-generation solar power systems

ECS Transactions

Nielson, Gregory N.; Okandan, Murat; Cruz-Campa, Jose L.; Gupta, Vipin P.; Resnick, Paul; Sanchez, Carlos A.; Paap, Scott M.; Kim, B.; Sweatt, W.C.; Lentine, Anthony L.; Cederberg, Jeffrey G.; Tauke-Pedretti, Anna; Jared, B.H.; Anderson, Benjamin J.; Biefeld, Robert M.; Nelson, J.S.

Microsystem technologies have the potential to significantly improve the performance, reduce the cost, and extend the capabilities of solar power systems. These benefits are possible due to a number of significant beneficial scaling effects within solar cells, modules, and systems that are manifested as the size of solar cells decrease to the sub-millimeter range. To exploit these benefits, we are using advanced fabrication techniques to create solar cells from a variety of compound semiconductors and silicon that have lateral dimensions of 250 - 1000 μm and are 1 - 20 μm thick. These fabrication techniques come out of relatively mature microsystem technologies such as integrated circuits (IC) and microelectromechanical systems (MEMS) which provide added supply chain and scale-up benefits compared to even incumbent PV technologies. © The Electrochemical Society.

More Details

Enhanced efficiency for voltage matched stacked multi-junction cells: Optimization with yearly temperature and spectra variations

Conference Record of the IEEE Photovoltaic Specialists Conference

Lentine, Anthony L.; Nielson, Gregory N.; Okandan, Murat; Cruz-Campa, Jose L.; Tauke-Pedretti, Anna

We calculate voltage-matching considerations for stacked independent cells. The calculations show that designs using independent junctions that are voltage matched can achieve better efficiency across temperature, spectrum, and a yearly metric compared to traditional monolithic cells. Voltage matching is shown to be relatively insensitive to temperature and spectrum, but dependent on open circuit voltage as a measure of cell efficiency. Voltage matching can usually yield yearly efficiencies of 98%-99% of the efficiency of a system with each junction operating at its own maximum power point. © 2013 IEEE.

More Details

Postdoctoral program guidelines

Biedermann, Laura B.; Teich-Mcgoldrick, Stephanie; Cruz-Campa, Jose L.; Ekoto, Isaac W.; Ferreira, Summer R.; Hall, Lisa M.; Miller, Andrew W.; Liu, Xiaohua L.; Liu, Yanli L.; Gallis, Dorina F.S.

We, the Postdoc Professional Development Program (PD2P) leadership team, wrote these postdoc guidelines to be a starting point for communication between new postdocs, their staff mentors, and their managers. These guidelines detail expectations and responsibilities of the three parties, as well as list relevant contacts. The purpose of the Postdoc Program is to bring in talented, creative people who enrich Sandia's environment by performing innovative R&D, as well as by stimulating intellectual curiosity and learning. Postdocs are temporary employees who come to Sandia for career development and advancement reasons. In general, the postdoc term is 1 year, renewable up to five times for a total of six years. However, center practices may vary; check with your manager. At term, a postdoc may apply for a staff position at Sandia or choose to move to university, industry or another lab. It is our vision that those who leave become long-term collaborators and advocates whose relationships with Sandia have a positive effect upon our national constituency.

More Details

Ultrathin flexible crystalline silicon: Microsystems-enabled photovoltaics

IEEE Journal of Photovoltaics

Cruz-Campa, Jose L.; Nielson, Gregory N.; Resnick, Paul; Sanchez, Carlos A.; Clews, Peggy J.; Okandan, Murat; Friedmann, Thomas A.; Gupta, Vipin P.

We present an approach to create ultrathin (<20μm) and highly flexible crystalline silicon sheets on inexpensive substrates. We have demonstrated silicon sheets capable of bending at a radius of curvature as small as 2mm without damaging the silicon structure. Using microsystem tools, we created a suspended submillimeter honeycomb-segmented silicon structure anchored to the wafer only by small tethers. This structure is created in a standard thickness wafer enabling compatibility with common processing tools. The procedure enables all the high-temperature steps necessary to create a solar cell to be completed while the cells are on the wafer. In the transfer process, the cells attach to an adhesive flexible substrate which, when pulled away from the wafer, breaks the tethers and releases the honeycomb structure. We have previously demonstrated that submillimeter and ultrathin silicon segments can be converted into highly efficient solar cells, achieving efficiencies up to 14.9% at a thickness of 14μm. With this technology, achieving high efficiency (>15%) and highly flexible photovoltaic (PV) modules should be possible. © 2011 IEEE.

More Details

Ultrathin flexible crystalline silicon: Microsystems-enabled photovoltaics

IEEE Journal of Photovoltaics

Cruz-Campa, Jose L.; Nielson, Gregory N.; Resnick, Paul; Sanchez, Carlos A.; Clews, Peggy J.; Okandan, Murat; Friedmann, Thomas A.; Gupta, Vipin P.

We present an approach to create ultrathin (<20μm) and highly flexible crystalline silicon sheets on inexpensive substrates. We have demonstrated silicon sheets capable of bending at a radius of curvature as small as 2mm without damaging the silicon structure. Using microsystem tools, we created a suspended submillimeter honeycomb-segmented silicon structure anchored to the wafer only by small tethers. This structure is created in a standard thickness wafer enabling compatibility with common processing tools. The procedure enables all the high-temperature steps necessary to create a solar cell to be completed while the cells are on the wafer. In the transfer process, the cells attach to an adhesive flexible substrate which, when pulled away from the wafer, breaks the tethers and releases the honeycomb structure. We have previously demonstrated that submillimeter and ultrathin silicon segments can be converted into highly efficient solar cells, achieving efficiencies up to 14.9% at a thickness of 14μm. With this technology, achieving high efficiency (>15%) and highly flexible photovoltaic (PV) modules should be possible. © 2011 IEEE.

More Details

Microfabrication of Microsystem-Enabled Photovoltaic (MEPV) cells

Proceedings of SPIE - The International Society for Optical Engineering

Okandan, Murat; Cruz-Campa, Jose L.; Resnick, Paul; Clews, Peggy J.; Pluym, Tammy; Sanchez, Carlos A.; Gupta, Vipin P.

Microsystem-Enabled Photovoltaic (MEPV) cells allow solar PV systems to take advantage of scaling benefits that occur as solar cells are reduced in size. We have developed MEPV cells that are 5 to 20 microns thick and down to 250 microns across. We have developed and demonstrated crystalline silicon (c-Si) cells with solar conversion efficiencies of 14.9%, and gallium arsenide (GaAs) cells with a conversion efficiency of 11.36%. In pursuing this work, we have identified over twenty scaling benefits that reduce PV system cost, improve performance, or allow new functionality. To create these cells, we have combined microfabrication techniques from various microsystem technologies. We have focused our development efforts on creating a process flow that uses standard equipment and standard wafer thicknesses, allows all high-temperature processing to be performed prior to release, and allows the remaining post-release wafer to be reprocessed and reused. The c-Si cell junctions are created using a backside point-contact PV cell process. The GaAs cells have an epitaxially grown junction. Despite the horizontal junction, these cells also are backside contacted. We provide recent developments and details for all steps of the process including junction creation, surface passivation, metallization, and release.

More Details

Simulation and optimization of ultra thin photovoltaics

Cruz-Campa, Jose L.

Sandia National Laboratories (SNL) conducts pioneering research and development in Micro-Electro-Mechanical Systems (MEMS) and solar cell research. This dissertation project combines these two areas to create ultra-thin small-form-factor crystalline silicon (c-Si) solar cells. These miniature solar cells create a new class of photovoltaics with potentially novel applications and benefits such as dramatic reductions in cost, weight and material usage. At the beginning of the project, unusually low efficiencies were obtained in the research group. The intention of this research was thus to investigate the main causes of the low efficiencies through simulation, design, fabrication, and characterization. Commercial simulation tools were used to find the main causes of low efficiency. Once the causes were identified, the results were used to create improved designs and build new devices. In the simulations, parameters were varied to see the effect on the performance. The researched parameters were: resistance, wafer lifetime, contact separation, implant characteristics (size, dosage, energy, ratio between the species), contact size, substrate thickness, surface recombination, and light concentration. Out of these parameters, it was revealed that a high quality surface passivation was the most important for obtaining higher performing cells. Therefore, several approaches for enhancing the passivation were tried, characterized, and tested on cells. In addition, a methodology to contact and test the performance of all the cells presented in the dissertation under calibrated light was created. Also, next generation cells that could incorporate all the optimized layers including the passivation was designed, built, and tested. In conclusion, through this investigation, solar cells that incorporate optimized designs and passivation schemes for ultrathin solar cells were created for the first time. Through the application of the methods discussed in this document, the efficiency of the solar cells increased from below 1% to 15% in Microsystems Enabled Photovoltaic (MEPV) devices.

More Details

Back-contacted and small form factor GaAs solar cell

Cruz-Campa, Jose L.; Nielson, Gregory N.; Okandan, Murat; Sanchez, Carlos A.; Resnick, Paul; Clews, Peggy J.; Pluym, Tammy; Gupta, Vipin P.

We present a newly developed microsystem enabled, back-contacted, shade-free GaAs solar cell. Using microsystem tools, we created sturdy 3 {micro}m thick devices with lateral dimensions of 250 {micro}m, 500 {micro}m, 1 mm, and 2 mm. The fabrication procedure and the results of characterization tests are discussed. The highest efficiency cell had a lateral size of 500 {micro}m and a conversion efficiency of 10%, open circuit voltage of 0.9 V and a current density of 14.9 mA/cm{sup 2} under one-sun illumination.

More Details

Thin and small form factor cells : simulated behavior

Cruz-Campa, Jose L.; Okandan, Murat; Resnick, Paul; Grubbs, Robert K.; Clews, Peggy J.; Pluym, Tammy; Young, Ralph W.; Gupta, Vipin P.; Nielson, Gregory N.

Thin and small form factor cells have been researched lately by several research groups around the world due to possible lower assembly costs and reduced material consumption with higher efficiencies. Given the popularity of these devices, it is important to have detailed information about the behavior of these devices. Simulation of fabrication processes and device performance reveals some of the advantages and behavior of solar cells that are thin and small. Three main effects were studied: the effect of surface recombination on the optimum thickness, efficiency, and current density, the effect of contact distance on the efficiency for thin cells, and lastly the effect of surface recombination on the grams per Watt-peak. Results show that high efficiency can be obtained in thin devices if they are well-passivated and the distance between contacts is short. Furthermore, the ratio of grams per Watt-peak is greatly reduced as the device is thinned.

More Details

Back contacted and small form factor GAAS solar cell

Cruz-Campa, Jose L.; Nielson, Gregory N.; Okandan, Murat; Sanchez, Carlos A.; Resnick, Paul; Clews, Peggy J.; Pluym, Tammy; Gupta, Vipin P.

We present a newly developed microsystem enabled, back-contacted, shade-free GaAs solar cell. Using microsystem tools, we created sturdy 3 {micro}m thick devices with lateral dimensions of 250 {micro}m, 500 {micro}m, 1 mm, and 2 mm. The fabrication procedure and the results of characterization tests are discussed. The highest efficiency cell had a lateral size of 500 {micro}m and a conversion efficiency of 10%, open circuit voltage of 0.9 V and a current density of 14.9 mA/cm{sup 2} under one-sun illumination.

More Details
90 Results
90 Results