Publications

Results 71401–71500 of 99,299

Search results

Jump to search filters

Sliding friction in electrodeposited nanocrystalline Ni Alloys : transitional behavior associated with grain size, sliding speed, and contact stress

Padilla, Henry A.; Prasad, Somuri V.; Battaile, Corbett C.; Kotula, Paul G.

Metallic materials in sliding contact typically undergo dislocation-mediated plasticity, which results in stick-slip frictional behavior associated with high coefficients of friction ({mu} > 0.8). Our recent work on two electroplated nanocrystalline Ni alloys reveal that under combined conditions of low stress and low sliding velocity, these metals have very low friction ({mu} < 0.3). The observed frictional behavior is consistent with the transition from dislocation-mediated plasticity to an alternative mechanism such as grain boundary sliding. Focused ion beam cross-sections viewed in the TEM reveal the formation of a subsurface tribological bilayer at the contact surface, where the parent nanocrystalline material has evolved in structure to accommodate the frictional contact. Grain growth at a critical distance below the contact surface appears to promote a shear-accomodation layer. We will discuss these results in the context of a grain-size dependent transition from conventional microcrystalline wear behavior to this unusual wear behavior in nanocrystalline FCC metals.

More Details

[The National Institute for Nano-Engineering : a public-private partnership for research, education, and innovation]

Stinnett, Regan W.

The National Institute for Nano-Engineering (NINE) is a government/university/industry collaboration formed to help develop the next generation of nano-engineering innovation leaders for the United States. NINE involves students in large scale multi-disciplinary research projects focused on developing nano-enabled solutions to important national problems. The NINE program is based on the growing understanding that science and engineering education and innovation can be strengthened by involvement of university students and faculty with the world-class capabilities and facilities of government laboratories supplemented by guidance and support from industry collaborators. A number of recent reports have highlighted global competitiveness issues that the Unites States faces in the coming decades. Technology innovation, the ability to progress from emerging technologies to products that change the way people live, is a key to global leadership and economic prosperity for nations and their people. One of the top technology and economic drivers for the coming decades will the spectrum of emerging capabilities that fall into the category of nanotechnologies. NINE was established as a national innovation hub in the exciting and rapidly developing field of nano-engineering. It is intended to be a model of a novel partnership between universities and companies throughout the nation and the Department of Energy, with Sandia National Laboratories as the host lab for NINE. Successful technology innovation requires the integration of technical research and development with additional expertise from other areas including manufacturing, business, marketing, intellectual property, and the interface between technology and society. NINE was created to address this need for a new integrated approach to science and engineering research, education and innovation in a way that takes advantage of the nation's investment in facilities and capabilities at the national laboratories.

More Details

Explosive bonding of 316L to C18150 CuCrZr alloy for ITER applications

Goods, Steven H.

Recent developments in the ITER experimental fusion reactor require that a 316L stainless steel substructure be bonded to a precipitation strengthened CuCrZr heat sink alloy, C18150. This bond defines the cooling water pressure boundary. Given the importance of this interface, a variety of experiments with fusion welding and solid-state joining techniques have been performed. Analysis of the joints includes mechanical measurements of bond strength and microstructural analysis using optical and electron microscopy techniques. A particular emphasis was placed on the mechanical properties of the CuCrZr, since it undergoes additional thermal processing and cannot be solutionized and aged hardened per standard heat treatments. It was determined that the explosion bonding, of all the techniques examined, maximized the residual mechanical strength of the CuCrZr. The bonding parameters were optimized to minimize the amount of mixing and porosity at the interface. The details of these results and the optimization will be discussed.

More Details

Determination and optimization of spatial samples for distributed measurements

Shilling, Katherine M.; Tran, Hy

There are no accepted standards for determining how many measurements to take during part inspection or where to take them, or for assessing confidence in the evaluation of acceptance based on these measurements. The goal of this work was to develop a standard method for determining the number of measurements, together with the spatial distribution of measurements and the associated risks for false acceptance and false rejection. Two paths have been taken to create a standard method for selecting sampling points. A wavelet-based model has been developed to select measurement points and to determine confidence in the measurement after the points are taken. An adaptive sampling strategy has been studied to determine implementation feasibility on commercial measurement equipment. Results using both real and simulated data are presented for each of the paths.

More Details

In situ TEM investigation into the thermal stability of nanograined FCC metals

Hattar, Khalid M.; Knapp, J.A.

Nanostructured materials often display very unique properties related to their far-from-equilibrium nature. Due to these unique structures, many of these materials transform into other, more stable microstructures with minimal thermal excitation. This work will highlight examples of the unexpected routes taken during the microstructural evolution of pulsed-laser deposited (PLD) free-standing face-centered cubic (FCC) thin films as a function of deposition condition and annealing temperatures. A direct comparison between the grain growth dynamics observed during in situ TEM annealing experiments in PLD films of high-purity aluminum, copper, gold and nickel films, as well as aluminum-alumina alloys shows a multitude of kinetics. For high-purity systems film thickness, void density, grain size distribution, and deposition temperature were found to be the primary factors observed controlling the rate, extent, and nature of the grain growth. The growth dynamics ranged from nearly classical normal grain growth to abnormal grain growth resulting in a bimodal grain size distribution. The grain growth rate was found to be highly dependent on the materials system despite all of the films being nanograined FCC metals produced by similar PLD parameters. The investigation of the aluminum-alumina alloys produced under various compositions and deposition parameters suggests that particle pinning can be used to maintain nanostructured films, even after annealing treatments at high homologous temperatures. In addition to investigating the grain growth dynamics and the resulting grain size distribution, the variety of internal microstructures formed from thermal annealing were evaluated. These structures ranged from intergranular voids to stacking-fault tetrahedra. An unexpected, metastable hexagonal-closed packed phase was indentified in the high-purity nickel films. These in situ TEM observations have provided key insight into the microstructural evolution of nanograined free-standing metal films and the defect structure present in the grains resulting from various growth dynamics, in addition to suggesting multiple methods to tailor the structure and the resulting properties of nanostructured free-standing films.

More Details

Hyperspectral imaging of microalgae using two-photon excitation

Jones, Howland D.T.; Sinclair, Michael B.; Luk, Ting S.; Collins, Aaron M.; Garcia, Omar F.; Melgaard, David K.; Timlin, Jerilyn A.; Reichardt, Thomas A.

A considerable amount research is being conducted on microalgae, since microalgae are becoming a promising source of renewable energy. Most of this research is centered on lipid production in microalgae because microalgae produce triacylglycerol which is ideal for biodiesel fuels. Although we are interested in research to increase lipid production in algae, we are also interested in research to sustain healthy algal cultures in large scale biomass production farms or facilities. The early detection of fluctuations in algal health, productivity, and invasive predators must be developed to ensure that algae are an efficient and cost-effective source of biofuel. Therefore we are developing technologies to monitor the health of algae using spectroscopic measurements in the field. To do this, we have proposed to spectroscopically monitor large algal cultivations using LIDAR (Light Detection And Ranging) remote sensing technology. Before we can deploy this type of technology, we must first characterize the spectral bio-signatures that are related to algal health. Recently, we have adapted our confocal hyperspectral imaging microscope at Sandia to have two-photon excitation capabilities using a chameleon tunable laser. We are using this microscope to understand the spectroscopic signatures necessary to characterize microalgae at the cellular level prior to using these signatures to classify the health of bulk samples, with the eventual goal of using of LIDAR to monitor large scale ponds and raceways. By imaging algal cultures using a tunable laser to excite at several different wavelengths we will be able to select the optimal excitation/emission wavelengths needed to characterize algal cultures. To analyze the hyperspectral images generated from this two-photon microscope, we are using Multivariate Curve Resolution (MCR) algorithms to extract the spectral signatures and their associated relative intensities from the data. For this presentation, I will show our two-photon hyperspectral imaging results on a variety of microalgae species and show how these results can be used to characterize algal ponds and raceways.

More Details

Experiences with the High Energy Resolution Optics (HERO) update on a physical electronics 690 auger system

Wallace, William O.; Ohlhausen, J.A.; Brumbach, Michael T.

We will present our experiences with the new High Energy Resolution Optics (HERO) upgrade on a Physical Electronics Auger 690 system. This upgrade allows the single pass cylindrical analyzer in the Auger system to achieve higher energy resolution than in the standard mode. With this upgrade, it should be possible to separate chemical states for certain elements. Also, it should be possible to separate closely spaced peaks from selected elements that have been difficult or impossible to separate without the upgrade. Specifically, we will investigate practical use of this upgrade in the analysis of materials systems where overlapping peaks have historically been an issue, such as Kovar, which consists of the elements Ni, Fe and Co. Strategies for the successful use of the technique as well as its current limitations will be shown.

More Details

Understanding the physics of a possible non-Abelian fractional quantum hall effect state

Pan, Wei; Ross III, Anthony J.; Thalakulam, Madhu; Crawford, M.

We wish to present in this report experimental results from a one-year Senior Council Tier-1 LDRD project that focused on understanding the physics of a possible non-Abelian fractional quantum Hall effect state. We first give a general introduction to the quantum Hall effect, and then present the experimental results on the edge-state transport in a special fractional quantum Hall effect state at Landau level filling {nu} = 5/2 - a possible non-Abelian quantum Hall state. This state has been at the center of current basic research due to its potential applications in fault-resistant topological quantum computation. We will also describe the semiconductor 'Hall-bar' devices we used in this project. Electron physics in low dimensional systems has been one of the most exciting fields in condensed matter physics for many years. This is especially true of quantum Hall effect (QHE) physics, which has seen its intellectual wealth applied in and has influenced many seemingly unrelated fields, such as the black hole physics, where a fractional QHE-like phase has been identified. Two Nobel prizes have been awarded for discoveries of quantum Hall effects: in 1985 to von Klitzing for the discovery of integer QHE, and in 1998 to Tsui, Stormer, and Laughlin for the discovery of fractional QHE. Today, QH physics remains one of the most vibrant research fields, and many unexpected novel quantum states continue to be discovered and to surprise us, such as utilizing an exotic, non-Abelian FQHE state at {nu} = 5/2 for fault resistant topological computation. Below we give a briefly introduction of the quantum Hall physics.

More Details

Surface roughness of anodized titanium coatings

Chinn, Douglas A.; Dugger, Michael T.

Samples of grade five 6Al4V titanium alloy were coated with two commercial fluoropolymer anodizations (Tiodize and Canadize) and compared. Neither coating demonstrates significant outgassing. The coatings show very similar elemental analysis, except for the presence of lead in the Canadize coating, which may account for its lower surface friction in humid environments. Surface roughness has been compared by SEM, contact profilometry, optical profilometry, power spectral density and bidirectional scattering distribution function (BSDF). The Tiodize film is slightly smoother by all measurement methods, but the Canadize film shows slightly less scatter at all angles of incidence. Both films exhibited initial friction coefficients of 0.2 to 0.4, increasing to 0.4 to 0.8 after 1000 cycles of sliding due to wear of the coating and ball. The coatings are very similar and should behave identically in most applications.

More Details

A constitutive model for Sn-Pb solder

Neilsen, Michael K.; Boyce, Brad L.; Vianco, Paul T.

A unified creep plasticity damage (UCPD) model for Sn-Pb solder is developed in this paper. Stephens and Frear (1999) studied the creep behavior of near-eutectic 60Sn-40Pb solder subjected to low strain rates and found that the inelastic (creep and plastic) strain rate could be accurately described using a hyperbolic Sine function of the applied effective stress. A recently developed high-rate servo-hydraulic method was employed to characterize the temperature and strain-rate dependent stress-strain behavior of eutectic Sn-Pb solder over a wide range of strain rates (10{sup -4} to 10{sup 2} per second). The steady state inelastic strain rate data from these latest experiments were also accurately captured by the hyperbolic Sine equation developed by Stephens and Frear. Thus, this equation was used as the basis for the UCPD model for Sn-Pb solder developed in this paper. Stephens, J.J., and Frear, D.R., Metallurgical and Materials Transactions A, Volume 30A, pp. 1301-1313, May 1999.

More Details

Dr. John J. Stephens, Jr., metallurgist extraordinaire

Hosking, Floyd M.

The organizers of the Dr. John J. Stephens, Jr. Memorial Symposium: Deformation and Interfacial Phenomena in Advanced High-Temperature Materials are honoring the memory of Dr. Stephens and his many technical contributions that were accomplished over a relatively brief twenty year career. His research spanned the areas of creep and deformation of metals, dispersion-strengthened alloys and their properties, metal matrix composite materials, processing and properties of refractory metals, joining of ceramic-ceramic and metal-ceramic systems, active braze alloy development, and mechanical modeling of soldered and brazed assemblies. The purpose of this presentation is to highlight his research and engineering accomplishments, particularly during his professional career at Sandia National Laboratories in Albuquerque, NM.

More Details

The role of polymer formation during vapor phase lubrication of silicon

Dugger, Michael T.; Ohlhausen, J.A.; Dirk, Shawn M.

The lubrication of silicon surfaces with alcohol vapors has recently been demonstrated. With a sufficient concentration of pentanol vapor present, sliding of a silica ball on an oxidized silicon wafer can proceed with no measurable wear. The initial results of time-of-flight secondary ion mass spectrometry (ToF-SIMS) analysis of wear surfaces revealed a reaction product having thickness on the order of a monolayer, and with an ion spectrum that included fragments having molecular weights of 200 or more that occurred only inside the wear tracks. The parent alcohol molecule pentanol, has molecular weight of 88amu, suggesting that reactions of adsorbed alcohols on the wearing surfaces allowed polymerization of the alcohols to form higher molecular weight species. In addition to pin-on-disk studies, lubrication of silicon surfaces with pentanol vapors has also been demonstrated using MicroElectroMechanical Systems (MEMS) devices. Recent investigations of the reaction mechanisms of the alcohol molecules with the oxidized silicon surfaces have shown that wearless sliding requires a concentration of the alcohol vapor that is dependent upon the contact stress during sliding, with higher stress requiring a greater concentration of alcohol. Different vapor precursors including those with acid functionality, olefins, and methyl termination also produce polymeric reaction products, and can lubricate the silica surfaces. Doping the operating environment with oxygen was found to quench the formation of the polymeric reaction product, and demonstrates that polymer formation is not necessary for wearless sliding.

More Details

Developing a dissimilar metal foil-to-substrate resistance welding process

Knorovsky, Gerald A.

Materials changes occurring upon redesign caused redevelopment of the multiple spot resistance weld procedure employed to join a 23 micrometer thick foil of 15-7PH to a thick substrate and (at a separate location) a second, smaller thermal mass substrate. Both substrates were 304L. To avoid foil wrinkling, minimal heat input was used. The foil/thick substrate weld was solid-state, though the foil/small substrate weld was not. Metallographic evidence indicated occasional separation of the solid-state weld, hence a fusion weld was desired at both locations. In the redesign, a Co-Cr-Fe-Ni alloy was substituted for the foil, and a Ni-Cr-Mo alloy was evaluated for the small substrate. Both materials are substantially more resistive than their predecessors. This study reports development of weld schedules to accommodate the changes, yet achieve the fusion weld goal. Thermal analysis was employed to understand the effects caused by the various weld schedule parameters, and guide their optimization.

More Details

4-wave mixing for phase-matching free nonlinear optics in quantum cascade structures : LDRD 08-0346 final report

Chow, Weng W.; Wanke, Michael C.; Allen, Dan G.; Yang, Zhenshan Y.; Montano, Ines

Optical nonlinearities and quantum coherences have the potential to enable efficient, high-temperature generation of coherent THz radiation. This LDRD proposal involves the exploration of the underlying physics using intersubband transitions in a quantum cascade structure. Success in the device physics aspect will give Sandia the state-of-the-art technology for high-temperature THz quantum cascade lasers. These lasers are useful for imaging and spectroscopy in medicine and national defense. Success may have other far-reaching consequences. Results from the in-depth study of coherences, dephasing and dynamics will eventually impact the fields of quantum computing, optical communication and cryptology, especially if we are successful in demonstrating entangled photons or slow light. An even farther reaching development is if we can show that the QC nanostructure, with its discrete atom-like intersubband resonances, can replace the atom in quantum optics experiments. Having such an 'artificial atom' will greatly improve flexibility and preciseness in experiments, thereby enhancing the discovery of new physics. This is because we will no longer be constrained by what natural can provide. Rather, one will be able to tailor transition energies and optical matrix elements to enhance the physics of interest. This report summarizes a 3-year LDRD program at Sandia National Laboratories exploring optical nonlinearities in intersubband devices. Experimental and theoretical investigations were made to develop a fundamental understanding of light-matter interaction in a semiconductor system and to explore how this understanding can be used to develop mid-IR to THz emitters and nonclassical light sources.

More Details

A toolkit for detecting technical surprise

Trahan, Michael W.; Foehse, Mark C.

The detection of a scientific or technological surprise within a secretive country or institute is very difficult. The ability to detect such surprises would allow analysts to identify the capabilities that could be a military or economic threat to national security. Sandia's current approach utilizing ThreatView has been successful in revealing potential technological surprises. However, as data sets become larger, it becomes critical to use algorithms as filters along with the visualization environments. Our two-year LDRD had two primary goals. First, we developed a tool, a Self-Organizing Map (SOM), to extend ThreatView and improve our understanding of the issues involved in working with textual data sets. Second, we developed a toolkit for detecting indicators of technical surprise in textual data sets. Our toolkit has been successfully used to perform technology assessments for the Science & Technology Intelligence (S&TI) program.

More Details

Photopatternable low loss polymer dielectric materials for IR metamaterial applications

Ginn, James C.; Hines, Paul H.; Arrington, Christian L.; Sinclair, Michael B.; Dirk, Shawn M.; Rasberry, Roger D.

An overwhelming majority of metamaterial designs that have been proposed thus far rely on the use of metallic resonators to afford properties that are unprecedented in nature. Though well suited for applications at radio and microwave frequencies, metals experience severe ohmic losses at higher frequencies rendering their use at such frequencies impractical. Certainly the future of metamaterials lies in their implementation in the visible and long wavelength infrared (LWIR, 8-12 {micro}m). Thus, alternative design protocols and material components tailored specifically for these frequencies are highly attractive. Herein, we present low permittivity, low permeability polymer dielectric materials that are well suited substrates for LWIR-metamaterial applications. These materials lack vibrational absorption bands in the 8-12 {micro}m range are 3D fabrication compatible, photopatternable, and high temperature tolerant. Thus, these materials are ideal for fabrication of 3D metamaterial structures operating in the LWIR and can also serve as negative photoresists for contact lithography applications.

More Details

Active infrared materials for beam steering

Shaner, Eric A.; Brener, Igal; Gin, Aaron G.; Reno, John L.; Barrick, T.A.

The mid-infrared (mid-IR, 3 {micro}m -12 {micro}m) is a highly desirable spectral range for imaging and environmental sensing. We propose to develop a new class of mid-IR devices, based on plasmonic and metamaterial concepts, that are dynamically controlled by tunable semiconductor plasma resonances. It is well known that any material resonance (phonons, excitons, electron plasma) impacts dielectric properties; our primary challenge is to implement the tuning of a semiconductor plasma resonance with a voltage bias. We have demonstrated passive tuning of both plasmonic and metamaterial structures in the mid-IR using semiconductors plasmas. In the mid-IR, semiconductor carrier densities on the order of 5E17cm{sup -3} to 2E18cm{sup -3} are desirable for tuning effects. Gate control of carrier densities at the high end of this range is at or near the limit of what has been demonstrated in literature for transistor style devices. Combined with the fact that we are exploiting the optical properties of the device layers, rather than electrical, we are entering into interesting territory that has not been significantly explored to date.

More Details

Origins and mitigation of spurious modes in aluminum nitride microresonators

Olsson, Roy H.; Wojciechowski, Kenneth E.; Branch, Darren W.

Recently reported narrow bandwidth, <;2%, aluminum nitride microresonator filters in the 100-500 MHz range offer lower insertion loss, 100x smaller size, and elimination of large external matching networks, when compared to similar surface acoustic wave filters. While the initial results are promising, many microresonators exhibit spurious responses both close and far from the pass band which degrade the out of band rejection and prevent the synthesis of useful filters. This paper identifies the origins of several unwanted modes in overtone width extensional aluminum nitride microresonators and presents techniques for mitigating the spurious responses.

More Details

Bridging the gaps : joining information sources with Splunk

Corwell, Sophia E.

Supercomputers are composed of many diverse components, operated at a variety of scales, and function as a coherent whole. The resulting logs are thus diverse in format, interrelated at multiple scales, and provide evidence of faults across subsystems. When combined with system configuration information, insights on both the downstream effects and upstream causes of events can be determined. However, difficulties in joining the data and expressing complex queries slow the speed at which actionable insights can be obtained. Effectively connecting data experts and data miners faces similar hurdles. This paper describes our experience with applying the Splunk log analysis tool as a vehicle to combine both data, and people. Splunk's search language, lookups, macros, and subsearches reduce hours of tedium to seconds of simplicity, and its tags, saved searches, and dashboards offer both operational insights and collaborative vehicles.

More Details

Design of a physical security perimeter fencing system

Ross, Michael P.; Lin, Han W.

Design of a physical security perimeter fencing system requires that security designers provide effective detection, delay, and response functionalities with minimal nuisance alarms. In addition, the designers must take into considerations the security fence system life cycle cost (equipment and grounds maintenance), complexity of the terrain, safety, and environmental conditions (location of where the security fence will be installed). Often, these factors drive the security designers to design a perimeter intrusion detection and assessment system (PIDAS) that includes: (1) larger than desired footprint, (2) one or more animal control fences to minimize the nuisance alarm rate (NAR), and (3) clear zones and an isolation zone to facilitate intrusion detection and assessment by keeping the fence lines clear of vegetation, trash, and other objects that could impede the security system's performance. This paper presents a two-tier PIDAS design that focuses on effective performance specifically in high probability of detection and low NAR that minimizes cost and the footprint of the system.

More Details

NetCAP status report for the end of fiscal year 2010

Hamlet, Benjamin R.; Young, Christopher J.

Fiscal year 2010 (FY10) is the second full year of NetCAP development and the first full year devoted largely to new feature development rather than the reimplementation of existing capabilities found in NetSim (Sereno et al., 1990). Major tasks completed this year include: (1) Addition of hydroacoustic simulation; (2) Addition of event Identification simulation; and (3) Initial design and preparation for infrasound simulation. The Network Capability Assessment Program (NetCAP) is a software tool under development at Sandia National Laboratories used for studying the capabilities of nuclear explosion monitoring networks. This report discusses motivation and objectives for the NetCAP project, lists work performed prior to fiscal year 2010 (FY10) and describes FY10 accomplishments in detail.

More Details

Carbon-enhanced VRLA batteries

Enos, David; Hund, Thomas D.

The addition of certain forms of carbon to the negative plate in valve regulated lead acid (VRLA) batteries has been demonstrated to increase the cycle life of such batteries by an order of magnitude or more under high-rate, partial-state-of-charge operation. Such performance will provide a significant impact, and in some cases it will be an enabling feature for applications including hybrid electric vehicles, utility ancillary regulation services, wind farm energy smoothing, and solar photovoltaic energy smoothing. There is a critical need to understnd how the carbon interacts with the negative plate and achieves the aforementioned benefits at a fundamental level. Such an understanding will not only enable the performance of such batteries to be optimzied, but also to explore the feasibility of applying this technology to other battery chemistries. In partnership with the East Penn Manufacturing, Sandia will investigate the electrochemical function of the carbon and possibly identify improvements to its anti-sulfation properties. Shiomi, et al. (1997) discovered that the addition of carbon to the negative active material (NAM) substantially reduced PbSO{sub 4} accumulation in high rate, partial state of charge (HRPSoC) cycling applications. This improved performance with a minimal cost. Cycling applications that were uneconomical for traditional VRLA batteries are viable for the carbon enhanced VRLA. The overall goal of this work is to quantitatively define the role that carbon plays in the electrochemistry of a VRLA battery.

More Details
Results 71401–71500 of 99,299
Results 71401–71500 of 99,299