Publications

Results 26–50 of 363

Search results

Jump to search filters

Compositional Effects of Additively Manufactured Refractory High‐Entropy Alloys under High‐Energy Helium Irradiation

Nanomaterials

Lang, Eric J.; Burns, Kory; Wang, Yongqiang; Kotula, Paul G.; Kustas, Andrew K.; Rodriguez, Sal; Aitkaliyeva, Assel; Hattar, Khalid M.

High‐Entropy Alloys (HEAs) are proposed as materials for a variety of extreme environments, including both fission and fusion radiation applications. To withstand these harsh environments, materials processing must be tailored to their given application, now achieved through additive manufacturing processes. However, radiation application opportunities remain limited due to an incomplete understanding of the effects of irradiation on HEA performance. In this letter, we investigate the response of additively manufactured refractory high‐entropy alloys (RHEAs) to helium (He) ion bombardment. Through analytical microscopy studies, we show the interplay between the alloy composition and the He bubble size and density to demonstrate how increasing the compositional complexity can limit the He bubble effects, but care must be taken in selecting the appropriate constituent elements.

More Details

Highly reversible Zn anode with a practical areal capacity enabled by a sustainable electrolyte and superacid interfacial chemistry

Joule

Li, Chang; Shyamsunder, Abhinandan; Hoane, Alexis G.; Long, Daniel M.; Kwok, Chun Y.; Kotula, Paul G.; Zavadil, Kevin R.; Gewirth, Andrew A.; Nazar, Linda F.

Aqueous zinc-metal batteries are plagued by poor Zn reversibility owing to zinc dendrite and layered double hydroxide (LDH) formation. Here, we introduce a novel additive—N,N-dimethylformamidium trifluoromethanesulfonate (DOTf)—in a low-cost aqueous electrolyte that can very effectively address these issues. The initial water-assisted dissociation of DOTf into triflic superacid creates a robust nanostructured solid-electrolyte interface (SEI)—revealed by operando spectroscopy and cryomicroscopy—which excludes water and enables dense Zn deposition. We demonstrate excellent Zn plating/stripping in a Zn||Cu asymmetric cell for more than 3,500 cycles. Furthermore, near 100% CE is realized at a combined high current density of 4 mA cm−2 and an areal capacity of 4 mAh cm−2 over long-term cycling. Zn||Zn0.25V2O5·nH2O full cells retain ∼83% of their capacity after 1,000 cycles with mass-limited Zn anodes. By restricting the depth of discharge, the cathodes exhibit less proton intercalation and LDH formation with an extended lifetime of 2,000 cycles.

More Details

The effect of metal-insulator interface interactions on electrical transport in granular metals

Journal of Physics Condensed Matter

Gilbert, Simeon J.; Rosenberg, Samantha G.; Kotula, Paul G.; Kmieciak, Thomas G.; Biedermann, Laura B.; Siegal, Michael P.

We present an in-depth study of metal-insulator interfaces within granular metal (GM) films and correlate their interfacial interactions with structural and electrical transport properties. Nominally 100 nm thick GM films of Co and Mo dispersed within yttria-stabilized zirconia (YSZ), with volumetric metal fractions (φ) from 0.2-0.8, were grown by radio frequency co-sputtering from individual metal and YSZ targets. Scanning transmission electron microscopy and DC transport measurements find that the resulting metal islands are well-defined with 1.7-2.6 nm average diameters and percolation thresholds between φ = 0.4-0.5. The room temperature conductivities for the φ = 0.2 samples are several orders of magnitude larger than previously-reported for GMs. X-ray photoemission spectroscopy indicates both oxygen vacancy formation within the YSZ and band-bending at metal-insulator interfaces. The higher-than-predicted conductivity is largely attributed to these interface interactions. In agreement with recent theory, interactions that reduce the change in conductivity across the metal-insulator interface are seen to prevent sharp conductivity drops when the metal concentration decreases below the percolation threshold. These interface interactions help interpret the broad range of conductivities reported throughout the literature and can be used to tune the conductivities of future GMs.

More Details

Formation of Al3Sc in Al0.8Sc0.2 thin films

Vacuum

Esteves, Giovanni E.; Bischoff, Joseph; Schmidt, Ethan W.; Rodriguez, Mark A.; Kotula, Paul G.; Rosenberg, Samantha G.

We report the formation of Al3Sc, in 100 nm Al0.8Sc0.2 films, is found to be driven by exposure to high temperature through higher deposition temperature or annealing. High film resistivity was observed in films with lower deposition temperature that exhibited a lack of crystallinity, which is anticipated to cause more electron scattering. An increase in deposition temperature allows for the nucleation and growth of crystalline Al3Sc regions that were verified by electron diffraction. The increase in crystallinity reduces electron scattering, which results in lower film resistivity. Annealing Al0.8Sc0.2 films at 600 °C in an Ar vacuum environment also allows for the formation and recrystallization of Al3Sc and Al and yields saturated resistivity values between 9.58 and 10.5 μΩ-cm regardless of sputter conditions. Al3Sc was found to nucleate and grow in a random orientation when deposited on SiO2, and highly {111} textured when deposited on 100 nm Ti and AlN films that were used as template layers. The rocking curve of the Al3Sc 111 reflection for the as-deposited films on Ti and AlN at 450 °C was 1.79° and 1.68°, respectively. Annealing the film deposited on the AlN template reduced the rocking curve substantially to 1.01° due to recrystallization of Al3Sc and Al within the film.

More Details

Polymer intercalation synthesis of glycoboehmite nanosheets

Applied Clay Science

Bell, Nelson S.; Rodriguez, Mark A.; Kotula, Paul G.; Kruichak, Jessica N.; Hernandez-Sanchez, Bernadette A.; Casillas, Maddison R.; Kolesnichenko, Igor K.; Matteo, Edward N.

Novel materials based on the aluminum oxyhydroxide boehmite phase were prepared using a glycothermal reaction in 1,4-butanediol. Under the synthesis conditions, the atomic structure of the boehmite phase is altered by the glycol solvent in place of the interlayer hydroxyl groups, creating glycoboehmite. The structure of glycoboehmite was examined in detail to determine that glycol molecules are intercalated in a bilayer structure, which would suggest that there is twice the expansion identified previously in the literature. This precursor phase enables synthesis of two new phases that incorporate either polyvinylpyrrolidone or hydroxylpropyl cellulose nonionic polymers. These new materials exhibit changes in morphology, thermal properties, and surface chemistry. All the intercalated phases were investigated using PXRD, HRSTEM, SEM, FT-IR, TGA/DSC, zeta potential titrations, and specific surface area measurement. These intercalation polymers are non-ionic and interact through wetting interactions and hydrogen bonding, rather than by chemisorption or chelation with the aluminum ions in the structure.

More Details

Evaluation of Engineered Barrier Systems FY21 Report

Matteo, Edward N.; Dewers, Thomas D.; Hadgu, Teklu H.; Bell, Nelson S.; Laros, James H.; Kotula, Paul G.; Kruichak, Jessica N.; Sanchez-Hernandez, Bernadette A.; Casilas, M.R.; Kolesnichenko, Igor K.; Caporuscio, F.; Sauer, K.B.; Rock, M.; Zheng, L.; Borglin, S.; Lammers, L.; Whittaker, M.; Zarzycki, P.; Fox, P.; Chang, C.; Subramanian, N.; Nico, P.; Tournassat, C.; Chou, C.; Xu, H.; Singer, E.; Steefel, C.; Peruzzo, L.; Wu, Y.

This report describes research and development (R&D) activities conducted during fiscal year 2021 (FY21) specifically related to the Engineered Barrier System (EBS) R&D Work Package in the Spent Fuel and Waste Science and Technology (SFWST) Campaign supported by the United States (U.S.) Department of Energy (DOE). The R&D activities focus on understanding EBS component evolution and interactions within the EBS, as well as interactions between the host media and the EBS. A primary goal is to advance the development of process models that can be implemented directly within the Generic Disposal System Analysis (GDSA) platform or that can contribute to the safety case in some manner such as building confidence, providing further insight into the processes being modeled, establishing better constraints on barrier performance, etc.

More Details

Variable Laser Ignition Pathways in Al/Pt Reactive Multilayers across 10 Decades of Pulse Duration

Journal of Physical Chemistry C

Abere, Michael J.; Yarrington, Cole D.; Kotula, Paul G.; Mcdonald, Joel P.; Adams, David P.

Pulsed laser irradiation is used to investigate the local initiation of rapid, self-propagating formation reactions in Al/Pt multilayers. The single pulse direct laser ignition of these 1.6 μm thick freestanding foils was characterized over 10 decades of pulse duration (10 ms to 150 fs). Finite element, reactive heat transport modeling of the near-threshold conditions has identified three distinct ignition pathways. For milli- to microsecond pulses, ignition occurs following sufficient absorption of laser energy to enable diffusion of Al and Pt between layers such that the heat released from the corresponding exothermic reaction overcomes conductive losses outside the laser-irradiated zone. When pulse duration is decreased into the nanosecond regime, heat is concentrated near the surface such that the Al locally melts, and a portion of the top-most bilayers react initially. The favorable kinetics and additional heat enable ignition. Further reducing pulse duration to hundreds of femtoseconds leads to a third ignition pathway. While much of the energy from these pulses is lost to ablation, the remaining heat beneath the crater can be sufficiently concentrated to drive a transverse self-propagating reaction, wherein the heat released from mixing at each interface occurs under kinetic conditions capable of igniting the subsequent layer.

More Details

Airborne Release Fractions from Surrogate Nuclear Waste Fires Containing Lanthanide Nitrates and Depleted Uranium Nitrate in 30% Tributyl Phosphate in Kerosene

Nuclear Technology

Hubbard, Joshua A.; Boyle, Timothy J.; Zepper, Ethan T.; Brown, Alexander B.; Settecerri, Taylor S.; Kotula, Paul G.; McKenzie, Bonnie B.; Lemieux, Laura J.; Zigmond, Joseph Z.; Preston, Rose T.; Maes, Brenda M.; Wiemann, Dora K.; Guerrero, Fernando G.; Robinson, Xavier J.

Airborne contaminants from fires containing nuclear waste represent significant health hazards and shape the design and operation of nuclear facilities. Much of the data used to formulate DOE-HDBK-3010-94, “Airborne Release Fractions/Rates and Respirable Fractions for Nonreactor Nuclear Facilities,” from the U.S. Department of Energy, were taken over 40 years ago. The objectives of this study were to reproduce experiments from Pacific Northwest Laboratories conducted in June 1973 employing current aerosol measurement methods and instrumentation, develop an enhanced understanding of particulate formation and transport from fires containing nuclear waste, and provide modeling and experimental capabilities for updating current standards and practices in nuclear facilities. A special chamber was designed to conduct small fires containing 25 mL of flammable waste containing lutetium nitrate, ytterbium nitrate, or depleted uranium nitrate. Carbon soot aerosols showed aggregates of primary particles ranging from 20 to 60 nm in diameter. In scanning electron microscopy, ~200-nm spheroidal particles were also observed dispersed among the fractal aggregates. The 200-nm spherical particles were composed of metal phosphates. Airborne release fractions (ARFs) were characterized by leaching filter deposits and quantifying metal concentrations with mass spectrometry. The average mass-based ARF for 238U experiments was 1.0 × 10−3 with a standard deviation of 7.5 × 10−4. For the original experiments, DOE-HDBK-3010-94 states, “Uranium ARFs range from 2 × 10−4 to 3 × 10−3, an uncertainty of approximately an order of magnitude.” Thus, current measurements were consistent with DOE-HDBK-3010-94 values. ARF values for lutetium and ytterbium were approximately one to two orders of magnitude lower than 238U. Metal nitrate solubility may have varied with elemental composition and temperature, thereby affecting ARF values for uranium surrogates (Yb and Lu). In addition to ARF data, solution boiling temperatures and evaporation rates can also be deduced from experimental data.

More Details
Results 26–50 of 363
Results 26–50 of 363