Publications

Results 26–50 of 371

Search results

Jump to search filters

In-situ, nanoscale fracture toughness measurements for improved mechanical interfaces

Delrio, F.W.; Grutzik, S.J.; Mook, William M.; Dickens, Sara M.; Kotula, Paul G.; Hintsala, Eric D.; Stauffer, Douglas D.; Boyce, Brad L.

In this project, we demonstrated stable nanoscale fracture in single-crystal silicon using an in-situ wedge-loaded double cantilever beam (DCB) specimen. The fracture toughness KIC was calculated directly from instrumented measurement of force and displacement via finite element analysis with frictional corrections. Measurements on multiple test specimens were used to show KIC = 0.72 ± 0.07 MPa m1/2 on {111} planes and observe the crack-growth resistance curve in <500 nm increments. The exquisite stability of crack growth, instrumented measurement of material response, and direct visual access to observe nanoscale fracture processes in an ideally brittle material differentiate this approach from prior DCB methods.

More Details

The growth and nanothermite reaction of 2Al/3NiO multilayer thin films

Journal of Applied Physics

Abere, Michael J.; Beason, Matthew T.; Reeves, Robert V.; Rodriguez, Mark A.; Kotula, Paul G.; Sobczak, Catherine E.; Son, Steven F.; Yarrington, Cole D.; Adams, David P.

Nanothermite NiO-Al is a promising material system for low gas emission heat sources; yet, its reactive properties are highly dependent on material processing conditions. In the current study, sputter deposition is used to fabricate highly controlled nanolaminates comprised of alternating NiO and Al layers. Films having an overall stoichiometry of 2Al to 3NiO were produced with different bilayer thicknesses to investigate how ignition and self-sustained, high temperature reactions vary with changes to nanometer-scale periodicity and preheat conditions. Ignition studies were carried out with both hot plate and laser irradiation and compared to slow heating studies in hot-stage x-ray diffraction. Ignition behavior has bilayer thickness and heating rate dependencies. The 2Al/3NiO with λ ≤ 300 nm ignited via solid/solid diffusion mixing (activation energy, Ea = 49 ± 3 kJ/mole). Multilayers having λ≥ 500 nm required a more favorable mixing kinetics of solid/liquid dissolution into molten Al (Ea = 30 ± 4 kJ/mole). This solid/liquid dissolution Ea is a factor of 5 lower than that of the previously reported powder compacts due to the elimination of a passivating Al oxide layer present on the powder. The reactant mixing mechanism between 300 and 500 nm bilayer thicknesses was dependent on the ignition source's heating rate. The self-propagating reaction velocities of 2Al/3NiO multilayers varied from 0.4 to 2.5 m/s. Pre-heating nanolaminates to temperatures below the onset reaction temperatures associated with forming intermediate nickel aluminides at multilayer interfaces led to increased propagation velocities, whereas pre-heating samples above the onset temperatures inhibited subsequent attempts at laser ignition.

More Details

Compositional Effects of Additively Manufactured Refractory High‐Entropy Alloys under High‐Energy Helium Irradiation

Nanomaterials

Lang, Eric J.; Burns, Kory; Wang, Yongqiang; Kotula, Paul G.; Kustas, Andrew B.; Rodriguez, Sal; Aitkaliyeva, Assel; Hattar, Khalid M.

High‐Entropy Alloys (HEAs) are proposed as materials for a variety of extreme environments, including both fission and fusion radiation applications. To withstand these harsh environments, materials processing must be tailored to their given application, now achieved through additive manufacturing processes. However, radiation application opportunities remain limited due to an incomplete understanding of the effects of irradiation on HEA performance. In this letter, we investigate the response of additively manufactured refractory high‐entropy alloys (RHEAs) to helium (He) ion bombardment. Through analytical microscopy studies, we show the interplay between the alloy composition and the He bubble size and density to demonstrate how increasing the compositional complexity can limit the He bubble effects, but care must be taken in selecting the appropriate constituent elements.

More Details

Highly reversible Zn anode with a practical areal capacity enabled by a sustainable electrolyte and superacid interfacial chemistry

Joule

Li, Chang; Shyamsunder, Abhinandan; Hoane, Alexis G.; Long, Daniel M.; Kwok, Chun Y.; Kotula, Paul G.; Zavadil, Kevin R.; Gewirth, Andrew A.; Nazar, Linda F.

Aqueous zinc-metal batteries are plagued by poor Zn reversibility owing to zinc dendrite and layered double hydroxide (LDH) formation. Here, we introduce a novel additive—N,N-dimethylformamidium trifluoromethanesulfonate (DOTf)—in a low-cost aqueous electrolyte that can very effectively address these issues. The initial water-assisted dissociation of DOTf into triflic superacid creates a robust nanostructured solid-electrolyte interface (SEI)—revealed by operando spectroscopy and cryomicroscopy—which excludes water and enables dense Zn deposition. We demonstrate excellent Zn plating/stripping in a Zn||Cu asymmetric cell for more than 3,500 cycles. Furthermore, near 100% CE is realized at a combined high current density of 4 mA cm−2 and an areal capacity of 4 mAh cm−2 over long-term cycling. Zn||Zn0.25V2O5·nH2O full cells retain ∼83% of their capacity after 1,000 cycles with mass-limited Zn anodes. By restricting the depth of discharge, the cathodes exhibit less proton intercalation and LDH formation with an extended lifetime of 2,000 cycles.

More Details

The effect of metal-insulator interface interactions on electrical transport in granular metals

Journal of Physics Condensed Matter

Gilbert, Simeon J.; Rosenberg, Samantha G.; Kotula, Paul G.; Kmieciak, Thomas; Biedermann, Laura B.; Siegal, Michael P.

We present an in-depth study of metal-insulator interfaces within granular metal (GM) films and correlate their interfacial interactions with structural and electrical transport properties. Nominally 100 nm thick GM films of Co and Mo dispersed within yttria-stabilized zirconia (YSZ), with volumetric metal fractions (φ) from 0.2-0.8, were grown by radio frequency co-sputtering from individual metal and YSZ targets. Scanning transmission electron microscopy and DC transport measurements find that the resulting metal islands are well-defined with 1.7-2.6 nm average diameters and percolation thresholds between φ = 0.4-0.5. The room temperature conductivities for the φ = 0.2 samples are several orders of magnitude larger than previously-reported for GMs. X-ray photoemission spectroscopy indicates both oxygen vacancy formation within the YSZ and band-bending at metal-insulator interfaces. The higher-than-predicted conductivity is largely attributed to these interface interactions. In agreement with recent theory, interactions that reduce the change in conductivity across the metal-insulator interface are seen to prevent sharp conductivity drops when the metal concentration decreases below the percolation threshold. These interface interactions help interpret the broad range of conductivities reported throughout the literature and can be used to tune the conductivities of future GMs.

More Details

Formation of Al3Sc in Al0.8Sc0.2 thin films

Vacuum

Esteves, Giovanni; Bischoff, Joseph; Schmidt, Ethan; Rodriguez, Mark A.; Kotula, Paul G.; Rosenberg, Samantha G.

We report the formation of Al3Sc, in 100 nm Al0.8Sc0.2 films, is found to be driven by exposure to high temperature through higher deposition temperature or annealing. High film resistivity was observed in films with lower deposition temperature that exhibited a lack of crystallinity, which is anticipated to cause more electron scattering. An increase in deposition temperature allows for the nucleation and growth of crystalline Al3Sc regions that were verified by electron diffraction. The increase in crystallinity reduces electron scattering, which results in lower film resistivity. Annealing Al0.8Sc0.2 films at 600 °C in an Ar vacuum environment also allows for the formation and recrystallization of Al3Sc and Al and yields saturated resistivity values between 9.58 and 10.5 μΩ-cm regardless of sputter conditions. Al3Sc was found to nucleate and grow in a random orientation when deposited on SiO2, and highly {111} textured when deposited on 100 nm Ti and AlN films that were used as template layers. The rocking curve of the Al3Sc 111 reflection for the as-deposited films on Ti and AlN at 450 °C was 1.79° and 1.68°, respectively. Annealing the film deposited on the AlN template reduced the rocking curve substantially to 1.01° due to recrystallization of Al3Sc and Al within the film.

More Details

Polymer intercalation synthesis of glycoboehmite nanosheets

Applied Clay Science

Bell, Nelson S.; Rodriguez, Mark A.; Kotula, Paul G.; Kruichak-Duhigg, Jessica N.; Hernandez-Sanchez, Bernadette A.; Casillas, Maddison R.; Kolesnichenko, Igor V.; Matteo, Edward N.

Novel materials based on the aluminum oxyhydroxide boehmite phase were prepared using a glycothermal reaction in 1,4-butanediol. Under the synthesis conditions, the atomic structure of the boehmite phase is altered by the glycol solvent in place of the interlayer hydroxyl groups, creating glycoboehmite. The structure of glycoboehmite was examined in detail to determine that glycol molecules are intercalated in a bilayer structure, which would suggest that there is twice the expansion identified previously in the literature. This precursor phase enables synthesis of two new phases that incorporate either polyvinylpyrrolidone or hydroxylpropyl cellulose nonionic polymers. These new materials exhibit changes in morphology, thermal properties, and surface chemistry. All the intercalated phases were investigated using PXRD, HRSTEM, SEM, FT-IR, TGA/DSC, zeta potential titrations, and specific surface area measurement. These intercalation polymers are non-ionic and interact through wetting interactions and hydrogen bonding, rather than by chemisorption or chelation with the aluminum ions in the structure.

More Details

Evaluation of Engineered Barrier Systems FY21 Report

Matteo, Edward N.; Dewers, Thomas; Hadgu, Teklu; Bell, Nelson S.; Foulk, James W.; Kotula, Paul G.; Kruichak-Duhigg, Jessica N.; Sanchez-Hernandez, Bernadette A.; Casilas, M.R.; Kolesnichenko, Igor V.; Caporuscio, F.; Sauer, K.B.; Rock, M.; Zheng, L.; Borglin, S.; Lammers, L.; Whittaker, M.; Zarzycki, P.; Fox, P.; Chang, C.; Subramanian, N.; Nico, P.; Tournassat, C.; Chou, C.; Xu, H.; Singer, E.; Steefel, C.; Peruzzo, L.; Wu, Y.

This report describes research and development (R&D) activities conducted during fiscal year 2021 (FY21) specifically related to the Engineered Barrier System (EBS) R&D Work Package in the Spent Fuel and Waste Science and Technology (SFWST) Campaign supported by the United States (U.S.) Department of Energy (DOE). The R&D activities focus on understanding EBS component evolution and interactions within the EBS, as well as interactions between the host media and the EBS. A primary goal is to advance the development of process models that can be implemented directly within the Generic Disposal System Analysis (GDSA) platform or that can contribute to the safety case in some manner such as building confidence, providing further insight into the processes being modeled, establishing better constraints on barrier performance, etc.

More Details
Results 26–50 of 371
Results 26–50 of 371