Ultra-Efficient Neural Algorithm Accelerator Using Processing With Memory (Poster)
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
2019 International Symposium on VLSI Technology, Systems and Application, VLSI-TSA 2019
Analog crossbars have the potential to reduce the energy and latency required to train a neural network by three orders of magnitude when compared to an optimized digital ASIC. The crossbar simulator, CrossSim, can be used to model device nonidealities and determine what device properties are needed to create an accurate neural network accelerator. Experimentally measured device statistics are used to simulate neural network training accuracy and compare different classes of devices including TaOx ReRAM, Lir-Co-Oz devices, and conventional floating gate SONOS memories. A technique called 'Periodic Carry' can overcomes device nonidealities by using a positional number system while maintaining the benefit of parallel analog matrix operations.
ACS Applied Materials and Interfaces
With low-cost and simple processing, organic electrochromic polymers have attracted considerable attention as a promising material platform for flexible and low-energy-consuming optoelectronic devices. However, typical electrochromic polymers can only be switched from natural-colored to oxidized-transparent states. As a result, the complexity of combining several distinct polymers to achieve a full-color gamut has significantly limited the niche applications of electrochromic polymers. Here in this paper we report an electrochromic polymer based on 4,7-di((3,3-dimethyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepine-3-yl)-3,4-ethylenedioxythiophene) (PEP), which exhibits fast full-color reversible tuning capability and good stability. Furthermore, a red-green-blue flexible electrochromic device just based on poly(PEP) was fabricated, which offers an effective approach to dynamically manipulate color and enables a variety of optoelectronic applications.
Abstract not provided.
Science
Neuromorphic computers could overcome efficiency bottlenecks inherent to conventional computing through parallel programming and readout of artificial neural network weights in a crossbar memory array. However, selective and linear weight updates and <10-nanoampere read currents are required for learning that surpasses conventional computing efficiency. We introduce an ionic floating-gate memory array based on a polymer redox transistor connected to a conductive-bridge memory (CBM). Selective and linear programming of a redox transistor array is executed in parallel by overcoming the bridging threshold voltage of the CBMs. Synaptic weight readout with currents <10 nanoamperes is achieved by diluting the conductive polymer with an insulator to decrease the conductance. The redox transistors endure >1 billion write-read operations and support >1-megahertz write-read frequencies.
Abstract not provided.
Abstract not provided.
ACS Applied Materials and Interfaces
HKUST-1 or Cu3BTC2 (BTC = 1,3,5-benzenetricarboxylate) is a prototypical metal-organic framework (MOF) that holds a privileged position among MOFs for device applications, as it can be deposited as thin films on various substrates and surfaces. Recently, new potential applications in electronics have emerged for this material when HKUST-1 was demonstrated to become electrically conductive upon infiltration with 7,7,8,8-tetracyanoquinodimethane (TCNQ). However, the factors that control the morphology and reactivity of the thin films are unknown. Here, we present a study of the thin-film growth process on indium tin oxide and amorphous Si prior to infiltration. From the unusual bimodal, non-log-normal distribution of crystal domain sizes, we conclude that the nucleation of new layers of Cu3BTC2 is greatly enhanced by surface defects and thus difficult to control. We then show that these films can react with methanolic TCNQ solutions to form dense films of the coordination polymer Cu(TCNQ). This chemical conversion is accompanied by dramatic changes in surface morphology, from a surface dominated by truncated octahedra to randomly oriented thin platelets. The change in morphology suggests that the chemical reaction occurs in the liquid phase and is independent of the starting surface morphology. The chemical transformation is accompanied by 10 orders of magnitude change in electrical conductivity, from <10-11 S/cm for the parent Cu3BTC2 material to 10-1 S/cm for the resulting Cu(TCNQ) film. The conversion of Cu3BTC2 films, which can be grown and patterned on a variety of (nonplanar) substrates, to Cu(TCNQ) opens the door for the facile fabrication of more complex electronic devices.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Advanced Functional Materials
Electronic synaptic devices are important building blocks for neuromorphic computational systems that can go beyond the constraints of von Neumann architecture. Although two-terminal memristive devices are demonstrated to be possible candidates, they suffer from several shortcomings related to the filament formation mechanism including nonlinear switching, write noise, and high device conductance, all of which limit the accuracy and energy efficiency. Electrochemical three-terminal transistors, in which the channel conductance can be tuned without filament formation provide an alternative platform for synaptic electronics. In this work, an all-solid-state electrochemical transistor made with Li ion–based solid dielectric and 2D α-phase molybdenum oxide (α-MoO3) nanosheets as the channel is demonstrated. These devices achieve nonvolatile conductance modulation in an ultralow conductance regime (<75 nS) by reversible intercalation of Li ions into the α-MoO3 lattice. Based on this operating mechanism, the essential functionalities of synapses, such as short- and long-term synaptic plasticity and bidirectional near-linear analog weight update are demonstrated. Simulations using the handwritten digit data sets demonstrate high recognition accuracy (94.1%) of the synaptic transistor arrays. These results provide an insight into the application of 2D oxides for large-scale, energy-efficient neuromorphic computing networks.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
ACS Applied Materials and Interfaces
Because of their extraordinary surface areas and tailorable porosity, metal-organic frameworks (MOFs) have the potential to be excellent sensors of gas-phase analytes. MOFs with open metal sites are particularly attractive for detecting Lewis basic atmospheric analytes, such as water. Here, we demonstrate that thin films of the MOF HKUST-1 can be used to quantitatively determine the relative humidity (RH) of air using a colorimetric approach. HKUST-1 thin films are spin-coated onto rigid or flexible substrates and are shown to quantitatively determine the RH within the range of 0.1-5% RH by either visual observation or a straightforward optical reflectivity measurement. At high humidity (>10% RH), a polymer/MOF bilayer is used to slow the transport of H2O to the MOF film, enabling quantitative determination of RH using time as the distinguishing metric. Finally, the sensor is combined with an inexpensive light-emitting diode light source and Si photodiode detector to demonstrate a quantitative humidity detector for low humidity environments.
ChemSusChem
Detailed understanding of solid–solid interface structure–function relationships is critical for the improvement and wide deployment of all-solid-state batteries. The interfaces between lithium phosphorous oxynitride (LiPON) solid electrolyte material and lithium metal anode, and between LiPON and LixCoO2 cathode, have been reported to generate solid–electrolyte interphase (SEI)-like products and/or disordered regions. Using electronic structure calculations and crystalline LiPON models, we predict that LiPON models with purely P−N−P backbones are kinetically inert towards lithium at room temperature. In contrast, transfer of oxygen atoms from low-energy LixCoO2(104) surfaces to LiPON is much faster under ambient conditions. The mechanisms of the primary reaction steps, LiPON structural motifs that readily reacts with lithium metal, experimental results on amorphous LiPON to partially corroborate these predictions, and possible mitigation strategies to reduce degradations are discussed. LiPON interfaces are found to be useful case studies for highlighting the importance of kinetics-controlled processes during battery assembly at moderate processing temperatures.
ACS Nano
Three-dimensional thin-film solid-state batteries (3D TSSB) were proposed by Long et al. in 2004 as a structure-based approach to simultaneously increase energy and power densities. Here, we report experimental realization of fully conformal 3D TSSBs, demonstrating the simultaneous power-and-energy benefits of 3D structuring. All active battery components - electrodes, solid electrolyte, and current collectors - were deposited by atomic layer deposition (ALD) onto standard CMOS processable silicon wafers microfabricated to form arrays of deep pores with aspect ratios up to approximately 10. The cells utilize an electrochemically prelithiated LiV2O5 cathode, a very thin (40-100 nm) Li2PO2N solid electrolyte, and a SnNx anode. The fabrication process occurs entirely at or below 250 °C, promising compatibility with a variety of substrates as well as integrated circuits. The multilayer battery structure enabled all-ALD solid-state cells to deliver 37 μAh/cm2·μm (normalized to cathode thickness) with only 0.02% per-cycle capacity loss. Conformal fabrication of full cells over 3D substrates increased the areal discharge capacity by an order of magnitude while simulteneously improving power performance, a trend consistent with a finite element model. This work shows that the exceptional conformality of ALD, combined with conventional semiconductor fabrication methods, provides an avenue for the successful realization of long-sought 3D TSSBs which provide power performance scaling in regimes inaccessible to planar form factor cells.
Journal of Physics D: Applied Physics
Neuromorphic devices are becoming increasingly appealing as efficient emulators of neural networks used to model real world problems. However, no hardware to date has demonstrated the necessary high accuracy and energy efficiency gain over CMOS in both (1) training via backpropagation and (2) in read via vector matrix multiplication. Such shortcomings are due to device non-idealities, particularly asymmetric conductance tuning in response to uniform voltage pulse inputs. Here, by formulating a general circuit model for capacitive ion-exchange neuromorphic devices, we show that asymmetric nonlinearity in organic electrochemical neuromorphic devices (ENODes) can be suppressed by an appropriately chosen write scheme. Simulations based upon our model suggest that a nonlinear write-selector could reduce the switching voltage and energy, enabling analog tuning via a continuous set of resistance states (100 states) with extremely low switching energy (∼170 fJ • μm-2). This work clarifies the pathway to neural algorithm accelerators capable of parallelism during both read and write operations.
Abstract not provided.
Chemistry of Materials
Major advances in thin-film solid-state batteries (TFSSBs) may capitalize on 3D structuring using high-aspect-ratio substrates such as nanoscale pits, pores, trenches, flexible polymers, and textiles. This will require conformal processes such as atomic layer deposition (ALD) for every active functional component of the battery. Here we explore the deposition and electrochemical properties of SnO2, SnNy, and SnOxNy thin films as TFSSB anode materials, grown by ALD using tetrakisdimethylamido(tin), H2O, and N2 plasma as precursors. By controlling the dose ratio between H2O and N2, the N-O fraction can be tuned between 0% N and 95% N. The electrochemical properties of these materials were tested across a composition range varying from pure SnO2, to SnON intermediates, and pure SnNy. In TFSSBs, the SnNy anodes are found to be more stable during cycling than the SnO2 or SnOxNy films, with an initial reversible capacity beyond that of Li-Sn alloying, retaining 75% of their capacity over 200 cycles compared to only 50% for SnO2. Furthermore, the performance of the SnOxNy anodes indicates that SnNy anodes should not be negatively impacted by small levels of O contamination.
Abstract not provided.
Nano Letters
Li metal is the preferred anode material for all-solid-state Li batteries. However, a stable plating and stripping of Li metal at the anode-solid electrolyte interface remains a significant challenge particularly at practically feasible current densities. This problem usually relates to high and/or inhomogeneous Li-electrode-electrolyte interfacial impedance and formation and growth of high-aspect-ratio dendritic Li deposits at the electrode-electrolyte interface, which eventually shunt the battery. To better understand details of Li metal plating, we use operando electron microscopy and Auger spectroscopy to probe nucleation, growth, and stripping of Li metal during cycling of a model solid-state Li battery as a function of current density and oxygen pressure. We find a linear correlation between the nucleation density of Li clusters and the charging rate in an ultrahigh vacuum, which agrees with a classical nucleation and growth model. Moreover, the trace amount of oxidizing gas (≈10-6 Pa of O2) promotes the Li growth in a form of nanowires due to a fine balance between the ion current density and a growth rate of a thin lithium-oxide shell on the surface of the metallic Li. Interestingly, increasing the partial pressure of O2 to 10-5 Pa resumes Li plating in a form of 3D particles. Our results demonstrate the importance of trace amounts of preexisting or ambient oxidizing species on lithiation processes in solid-state batteries.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Applied Physics
Inherent advantages of wide bandgap materials make GaN-based devices attractive for power electronics and applications in radiation environments. Recent advances in the availability of wafer-scale, bulk GaN substrates have enabled the production of high quality, low defect density GaN devices, but fundamental studies of carrier transport and radiation hardness in such devices are lacking. Here, we report measurements of the hole diffusion length in low threading dislocation density (TDD), homoepitaxial n-GaN, and high TDD heteroepitaxial n-GaN Schottky diodes before and after irradiation with 2.5 MeV protons at fluences of 4-6 × 1013 protons/cm2. We also characterize the specimens before and after irradiation using electron beam-induced-current (EBIC) imaging, cathodoluminescence, deep level optical spectroscopy (DLOS), steady-state photocapacitance, and lighted capacitance-voltage (LCV) techniques. We observe a substantial reduction in the hole diffusion length following irradiation (50%-55%) and the introduction of electrically active defects which could be attributed to gallium vacancies and associated complexes (VGa-related), carbon impurities (C-related), and gallium interstitials (Gai). EBIC imaging suggests long-range migration and clustering of radiation-induced point defects over distances of ∼500 nm, which suggests mobile Gai. Following irradiation, DLOS and LCV reveal the introduction of a prominent optical energy level at 1.9 eV below the conduction band edge, consistent with the introduction of Gai.
Abstract not provided.
ACS Applied Materials and Interfaces
The family of three-dimensional topological insulators opens new avenues to discover novel photophysics and to develop novel types of photodetectors. ZrTe5 has been shown to be a Dirac semimetal possessing unique topological, electronic, and optical properties. Here, we present spatially resolved photocurrent measurements on devices made of nanoplatelets of ZrTe5, demonstrating the photothermoelectric origin of the photoresponse. Because of the high electrical conductivity and good Seebeck coefficient, we obtain noise-equivalent powers as low as 42 pW/Hz1/2, at room temperature for visible light illumination, at zero bias. We also show that these devices suffer from significant ambient reactivity, such as the formation of a Te-rich surface region driven by Zr oxidation as well as severe reactions with the metal contacts. This reactivity results in significant stresses in the devices, leading to unusual geometries that are useful for gaining insight into the photocurrent mechanisms. Our results indicate that both the large photothermoelectric response and reactivity must be considered when designing or interpreting photocurrent measurements in these systems.
Abstract not provided.
Nano Letters
The atomic force microscope (AFM) offers a rich observation window on the nanoscale, yet many dynamic phenomena are too fast and too weak for direct AFM detection. Integrated cavity-optomechanics is revolutionizing micromechanical sensing; however, it has not yet impacted AFM. Here, we make a groundbreaking advance by fabricating picogram-scale probes integrated with photonic resonators to realize functional AFM detection that achieve high temporal resolution (<10 ns) and picometer vertical displacement uncertainty simultaneously. The ability to capture fast events with high precision is leveraged to measure the thermal conductivity (η), for the first time, concurrently with chemical composition at the nanoscale in photothermal induced resonance experiments. The intrinsic η of metal-organic-framework individual microcrystals, not measurable by macroscale techniques, is obtained with a small measurement uncertainty (8%). The improved sensitivity (50×) increases the measurement throughput 2500-fold and enables chemical composition measurement of molecular monolayer-thin samples. Our paradigm-shifting photonic readout for small probes breaks the common trade-off between AFM measurement precision and ability to capture transient events, thus transforming the ability to observe nanoscale dynamics in materials.
Metal organic frameworks (MOFs) are extended, nanoporous crystalline compounds consisting of metal ions interconnected by organic ligands. Their synthetic versatility suggest a disruptive class of opto - electronic materials with a high degree of electrical tunability and without the property - degrading disorder of organic conductors. In this project we determined the factors controlling charge and energy transport in MOFs and evaluated their potential for thermoelectric energy conversion. Two strategies for a chieving electronic conductivity in MOFs were explored: 1) using redox active 'guest' molecules introduced into the pores to dope the framework via charge - transfer coupling (Guest@MOF), 2) metal organic graphene analogs (MOGs) with dispersive band structur es arising from strong electronic overlap between the MOG metal ions and its coordinating linker groups. Inkjet deposition methods were developed to facilitate integration of the guest@MOF and MOG materials into practical devices.
ECS Transactions (Online)
Metal organic frameworks (MOFs) have recently attracted great attentions for the thermoelectric (TE) applications, owing to their intrinsic low thermal conductivity, but their TE efficiencies are still low due to the poor electronic transport properties. Here, various synthetic strategies have been designed to optimize the electronic properties of MOFs. Using a series of first principle calculations and band theory, we explore the effect of structural topology and redox matching between the metal and coordinated atoms on the TE transport properties. In conclusion, the presented results provide a fundamental guidance for optimizing electronic charge transport of existing MOFs, and for designing yet to be discovered conductive MOFs for thermoelectric applications.
Digest of Technical Papers - Symposium on VLSI Technology
Analog resistive memories promise to reduce the energy of neural networks by orders of magnitude. However, the write variability and write nonlinearity of current devices prevent neural networks from training to high accuracy. We present a novel periodic carry method that uses a positional number system to overcome this while maintaining the benefit of parallel analog matrix operations. We demonstrate how noisy, nonlinear TaOx devices that could only train to 80% accuracy on MNIST, can now reach 97% accuracy, only 1% away from an ideal numeric accuracy of 98%. On a file type dataset, the TaOx devices achieve ideal numeric accuracy. In addition, low noise, linear Li1-xCoO2 devices train to ideal numeric accuracies using periodic carry on both datasets.
Digest of Technical Papers - Symposium on VLSI Technology
Analog resistive memories promise to reduce the energy of neural networks by orders of magnitude. However, the write variability and write nonlinearity of current devices prevent neural networks from training to high accuracy. We present a novel periodic carry method that uses a positional number system to overcome this while maintaining the benefit of parallel analog matrix operations. We demonstrate how noisy, nonlinear TaOx devices that could only train to 80% accuracy on MNIST, can now reach 97% accuracy, only 1% away from an ideal numeric accuracy of 98%. On a file type dataset, the TaOx devices achieve ideal numeric accuracy. In addition, low noise, linear Li1-xCoO2 devices train to ideal numeric accuracies using periodic carry on both datasets.
Abstract not provided.
Abstract not provided.
IEEE Electron Device Letters
Devices based on GaN have shown great promise for high power electronics, including their potential use as radiation tolerant components. An important step to realizing high power diodes is the design and implementation of an edge termination to mitigate field crowding, which can lead to premature breakdown. However, little is known about the effects of radiation on edge termination functionality. We experimentally examine the effects of proton irradiation on multiple field ring edge terminations in high power vertical GaN pin diodes using in operando imaging with electron beam induced current (EBIC). We find that exposure to proton irradiation influences field spreading in the edge termination as well as carrier transport near the anode. By using depth-dependent EBIC measurements of hole diffusion length in homoepitaxial n-GaN we demonstrate that the carrier transport effect is due to a reduction in hole diffusion length following proton irradiation.
Abstract not provided.
Abstract not provided.
Chemistry of Materials
Several active areas of research in novel energy storage technologies, including three-dimensional solid state batteries and passivation coatings for reactive battery electrode components, require conformal solid state electrolytes. We describe an atypical atomic layer deposition (ALD) process for a member of the lithium phosphorus oxynitride (LiPON) family, which is employed as a thin film lithium-conducting solid electrolyte. The reaction between lithium tert-butoxide (LiOtBu) and diethyl phosphoramidate (DEPA) produces conformal, ionically conductive thin films with a stoichiometry close to Li2PO2N between 250 and 300 °C. Unusually, the P/N ratio of the films is always 1, indicative of a particular polymorph of LiPON that closely resembles a polyphosphazene. Films grown at 300 °C have an ionic conductivity of (6.51 ± 0.36) × 10-7 S/cm at 35 °C and are functionally electrochemically stable in the window from 0 to 5.3 V versus Li/Li+. We demonstrate the viability of the ALD-grown electrolyte by integrating it into full solid state batteries, including thin film devices using LiCoO2 as the cathode and Si as the anode operating at up to 1 mA/cm2. The high quality of the ALD growth process allows pinhole-free deposition even on rough crystalline surfaces, and we demonstrate the successful fabrication and operation of thin film batteries with ultrathin (<100 nm) solid state electrolytes. Finally, we show an additional application of the moderate-temperature ALD process by demonstrating a flexible solid state battery fabricated on a polymer substrate.
Abstract not provided.
ACS Nano
Abstract not provided.
Abstract not provided.
Abstract not provided.
Nature Materials
The brain is capable of massively parallel information processing while consuming only ~1-100 fJ per synaptic event1,2. Inspired by the efficiency of the brain, CMOS-based neural architectures3 and memristors4,5 are being developed for pattern recognition and machine learning. However, the volatility, design complexity and high supply voltages for CMOS architectures, and the stochastic and energy-costly switching of memristors complicate the path to achieve the interconnectivity, information density, and energy efficiency of the brain using either approach. Here we describe an electrochemical neuromorphic organic device (ENODe) operating with a fundamentally different mechanism from existing memristors. ENODeswitches at lowvoltage and energy (<10 pJ for 103 μm2 devices), displays >500 distinct, non-volatile conductance states within a~1V range, and achieves high classification accuracy when implemented in neural network simulations. Plastic ENODes are also fabricated on flexible substrates enabling the integration of neuromorphic functionality in stretchable electronic systems6,7. Mechanical flexibility makes ENODes compatible with three-dimensional architectures, opening a path towards extreme interconnectivity comparable to the human brain.
Advanced Materials
Researchers present a Li-ion synaptic transistor for analog computation (LISTA). LISTA is an all solidstate, nonvolatile redox transistor (NVRT) with a resistance switching mechanism based upon the intercalation of Li-ion dopants into a channel of Li1-xCoO2. The researchers also demonstrate that an NVRT device is advantageous for neuromorphic applications because it utilizes the low energy process of ion insertion/extraction for resistance switching while maintaining nonvolatility.
Abstract not provided.
Abstract not provided.
Journal of Power Sources
Here, the insertion/extraction of lithium into/from various host materials is the basic process by which lithium-ion batteries reversible store charge. This process is generally accompanied by strain in the host material, inducing stress which can lead to capacity loss. Therefore, understanding of both the structural changes and the associated stress – investigated almost exclusively separate to date – is a critical factor for developing high-performance batteries. Here, we report an in situ method, which utilizes Raman spectroscopy in parallel with optical interferometry to study effects of varying charging rates (C-rates) on the structure and stress in a V2O5 thin film cathode. Abrupt stress changes at specific crystal phase transitions in the Li—V—O system are observed and the magnitude of the stress changes with the amount of lithium inserted into the electrode are correlated. A linear increase in the stress as a function of x in LixV2O5 is observed, indicating that C-rate does not directly contribute to larger intercalation stress. However, a more rapid increase in disorder within the LixV2O5 layers is correlated with higher C-rate. Ultimately, these experiments demonstrate how the simultaneous stress/Raman in situ approach can be utilized as a characterization platform for investigating various critical factors affecting lithium-ion battery performance.
ACS Applied Materials and Interfaces
Realization of safe, long cycle life and simple to package solid-state rechargeable batteries with high energy and power density has been a long-standing goal of the energy storage community.[1,2] Much of the research activity has been focused on developing new solid electrolytes with high Li ionic conductivity. In addition, LiPON, the only solid electrolyte currently used in commercial thin film solid state Li-ion batteris (SSLIBs), has a conductivity of ~10-6 S/cm, compared to ~0.01 S/cm typically observed for liquid organic electrolytes[3].
Modern semiconductor devices rely on the transport of minority charge carriers. Direct examination of minority carrier lifetimes in real devices with nanometer-scale features requires a measurement method with simultaneously high spatial and temporal resolutions. Achieving nanometer spatial resolutions at sub-nanosecond temporal resolution is possible with pump-probe methods that utilize electrons as probes. Recently, a stroboscopic scanning electron microscope was developed at Caltech, and used to study carrier transport across a Si p-n junction [ 1 , 2 , 3 ] . In this report, we detail our development of a prototype scanning ultrafast electron microscope system at Sandia National Laboratories based on the original Caltech design. This effort represents Sandia's first exploration into ultrafast electron microscopy.
MRS Bulletin
Motivated by low cost, low toxicity, mechanical flexibility, and conformability over complex shapes, organic semiconductors are currently being actively investigated as thermoelectric (TE) materials to replace the costly, brittle, and non-eco-friendly inorganic TEs for near-ambient-temperature applications. Metal-organic frameworks (MOFs) share many of the attractive features of organic polymers, including solution processability and low thermal conductivity. A potential advantage of MOFs and MOFs with guest molecules (Guest@MOFs) is their synthetic and structural versatility, which allows both the electronic and geometric structure to be tuned through the choice of metal, ligand, and guest molecules. This could solve the long-standing challenge of finding stable, high-TE-performance n-type organic semiconductors, as well as promote high charge mobility via the long-range crystalline order inherent in these materials. In this article, we review recent advances in the synthesis of MOF and Guest@MOF TEs and discuss how the Seebeck coefficient, electrical conductivity, and thermal conductivity could be tuned to further optimize TE performance.
Journal of Applied Physics
The thermal conductivity of n- and p-type doped gallium nitride (GaN) epilayers having thicknesses of 3-4 μm was investigated using time domain thermoreflectance. Despite possessing carrier concentrations ranging across 3 decades (1015-1018cm-3), n-type layers exhibit a nearly constant thermal conductivity of 180 W/mK. The thermal conductivity of p-type epilayers, in contrast, reduces from 160 to 110 W/mK with increased doping. These trends - and their overall reduction relative to bulk - are explained leveraging established scattering models where it is shown that, while the decrease in p-type layers is partly due to the increased impurity levels evolving from its doping, size effects play a primary role in limiting the thermal conductivity of GaN layers tens of microns thick. Device layers, even of pristine quality, will therefore exhibit thermal conductivities less than the bulk value of 240 W/mK owing to their finite thickness.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
IEEE Electron Device Letters
Control of electric fields with edge terminations is critical to maximize the performance of high-power electronic devices. While a variety of edge termination designs have been proposed, the optimization of such designs is challenging due to many parameters that impact their effectiveness. While modeling has recently allowed new insight into the detailed workings of edge terminations, the experimental verification of the design effectiveness is usually done through indirect means, such as the impact on breakdown voltages. In this letter, we use scanning photocurrent microscopy to spatially map the electric fields in vertical GaN p-n junction diodes in operando. We reveal the complex behavior of seemingly simple edge termination designs, and show how the device breakdown voltage correlates with the electric field behavior. Modeling suggests that an incomplete compensation of the p-type layer in the edge termination creates a bilayer structure that leads to these effects, with variations that significantly impact the breakdown voltage.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Nature Communications
With vibrant colours and simple, roomerature processing methods, electrochromic polymers have attracted attention as active materials for flexible, low-power-consuming devices. However, slow switching speeds in devices realized to date, as well as the complexity of having to combine several distinct polymers to achieve a full-colour gamut, have limited electrochromic materials to niche applications. Here we achieve fast, high-contrast electrochromic switching by significantly enhancing the interaction of light-propagating as deep-subwavelength-confined surface plasmon polaritons through arrays of metallic nanoslits, with an electrochromic polymer-present as an ultra-thin coating on the slit sidewalls. The switchable configuration retains the short temporal charge-diffusion characteristics of thin electrochromic films, while maintaining the high optical contrast associated with thicker electrochromic coatings. We further demonstrate that by controlling the pitch of the nanoslit arrays, it is possible to achieve a full-colour response with high contrast and fast switching speeds, while relying on just one electrochromic polymer.
Abstract not provided.
ACS Applied Materials and Interfaces
The further development of all-solid-state batteries is still limited by the understanding/engineering of the interfaces formed upon cycling. Here, we correlate the morphological, chemical, and electrical changes of the surface of thin-film devices with Al negative electrodes. The stable Al-Li-O alloy formed at the stress-free surface of the electrode causes rapid capacity fade, from 48.0 to 41.5 μAh/cm2 in two cycles. Surprisingly, the addition of a Cu capping layer is insufficient to prevent the device degradation. Nevertheless, Si electrodes present extremely stable cycling, maintaining >92% of its capacity after 100 cycles, with average Coulombic efficiency of 98%.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Physical Chemistry Letters
Metal-organic frameworks (MOFs) are crystalline nanoporous materials comprised of organic electron donors linked to metal ions by strong coordination bonds. Applications such as gas storage and separations are currently receiving considerable attention, but if the unique properties of MOFs could be extended to electronics, magnetics, and photonics, the impact on material science would greatly increase. Recently, we obtained "emergent properties," such as electronic conductivity and energy transfer, by infiltrating MOF pores with "guest" molecules that interact with the framework electronic structure. In this Perspective, we define a path to emergent properties based on the Guest@MOF concept, using zinc-carboxylate and copper-paddlewheel MOFs for illustration. Energy transfer and light harvesting are discussed for zinc carboxylate frameworks infiltrated with triplet-scavenging organometallic compounds and thiophene- and fullerene-infiltrated MOF-177. In addition, we discuss the mechanism of charge transport in TCNQ-infiltrated HKUST-1, the first MOF with electrical conductivity approaching conducting organic polymers. These examples show that guest molecules in MOF pores should be considered not merely as impurities or analytes to be sensed but also as an important aspect of rational design.
This report documents work that was performed under the Laboratory Directed Research and Development project, Science of Battery Degradation. The focus of this work was on the creation of new experimental and theoretical approaches to understand atomistic mechanisms of degradation in battery electrodes that result in loss of electrical energy storage capacity. Several unique approaches were developed during the course of the project, including the invention of a technique based on ultramicrotoming to cross-section commercial scale battery electrodes, the demonstration of scanning transmission x-ray microscopy (STXM) to probe lithium transport mechanisms within Li-ion battery electrodes, the creation of in-situ liquid cells to observe electrochemical reactions in real-time using both transmission electron microscopy (TEM) and STXM, the creation of an in-situ optical cell utilizing Raman spectroscopy and the application of the cell for analyzing redox flow batteries, the invention of an approach for performing ab initio simulation of electrochemical reactions under potential control and its application for the study of electrolyte degradation, and the development of an electrochemical entropy technique combined with x-ray based structural measurements for understanding origins of battery degradation. These approaches led to a number of scientific discoveries. Using STXM we learned that lithium iron phosphate battery cathodes display unexpected behavior during lithiation wherein lithium transport is controlled by nucleation of a lithiated phase, leading to high heterogeneity in lithium content at each particle and a surprising invariance of local current density with the overall electrode charging current. We discovered using in-situ transmission electron microscopy that there is a size limit to lithiation of silicon anode particles above which particle fracture controls electrode degradation. From electrochemical entropy measurements, we discovered that entropy changes little with degradation but the origin of degradation in cathodes is kinetic in nature, i.e. lower rate cycling recovers lost capacity. Finally, our modeling of electrode-electrolyte interfaces revealed that electrolyte degradation may occur by either a single or double electron transfer process depending on thickness of the solid-electrolyte-interphase layer, and this cross-over can be modeled and predicted.
ACS Nano
The local collection characteristics of grain interiors and grain boundaries in thin-film CdTe polycrystalline solar cells are investigated using scanning photocurrent microscopy. The carriers are locally generated by light injected through a small aperture (50-300 nm) of a near-field scanning optical microscope in an illumination mode. Possible influence of rough surface topography on light coupling is examined and eliminated by sculpting smooth wedges on the granular CdTe surface. By varying the wavelength of light, nanoscale spatial variations in external quantum efficiency are mapped. We find that the grain boundaries (GBs) are better current collectors than the grain interiors (GIs). The increased collection efficiency is caused by two distinct eff ects associated with the material composition of GBs. First, GBs are charged, and the corresponding built-in field facilitates the separation and the extraction of the photogenerated carriers. Second, the GB regions generate more photocurrent at long wavelength corresponding to the band edge, which can be caused by a smaller local band gap. Resolving carrier collection with nanoscale resolution in solar cell materials is crucial for optimizing the polycrystalline device performance through appropriate thermal processing and passivation of defects and surfaces. (Figure Presented).
Abstract not provided.
Abstract not provided.