Publications

Results 26–50 of 201

Search results

Jump to search filters

Temperature Dependence of Charge Distributions and Carrier Mobility in an Undoped Si/SiGe Heterostructure

IEEE Transactions on Electron Devices

Hsu, Nai-Wen; Hou, Wei-Chih; Chen, Yen-Yang; Wu, Yu-Jui; Kao, Hsiang-Shun; Harris, Charles T.; Lu, Tzu-Ming L.; Li, Jiun-Yun

Capacitance–voltage (C–V ) characteristics and carrier transport properties of 2-D electron gases (2DEGs) in an undoped Si/SiGe heterostructure at T = 4 – 35 K are presented here. In this work, two capacitance plateaus due to density saturation of the 2DEG in the buried Si quantum well (QW) are observed and explained by a model of surface tunneling. The peak mobility at 4 K is 4.1 × 105 cm2/V·s and enhanced by a factor of 1.97 at an even lower carrier density compared to the saturated carrier density, which is attributed to the effect of remote carrier screening. At T = 35 K, the mobility enhancement with a factor of 1.35 is still observed, which suggests the surface tunneling is still dominant.

More Details

Lattice Resonances of Nanohole Arrays for Quantum Enhanced Sensing

Physical Review Applied

Sanders, Stephen; Dowran, Mohammadjavad; Jain, Umang; Lu, Tzu-Ming L.; Marino, Alberto M.; Manjavacas, Alejandro

Periodic arrays of nanoholes perforated in metallic thin films interact strongly with light and produce large electromagnetic near-field enhancements in their vicinity. As a result, the optical response of these systems is very sensitive to changes in their dielectric environment, thus making them an exceptional platform for the development of compact optical sensors. Given that these systems already operate at the shot-noise limit when used as optical sensors, their sensing capabilities can be enhanced beyond this limit by probing them with quantum light, such as squeezed or entangled states. Motivated by this goal, here, we present a comparative theoretical analysis of the quantum enhanced sensing capabilities of metallic nanohole arrays with one and two holes per unit cell. Through a detailed investigation of their optical response, we find that the two-hole array supports resonances that are narrower and stronger than its one-hole counterpart, and therefore have a higher fundamental sensitivity limit as defined by the quantum Cramér-Rao bound. We validate the optical response of the analyzed arrays with experimental measurements of the reflectance of representative samples. The results of this work advance our understanding of the optical response of these systems and pave the way for developing sensing platforms capable of taking full advantage of the resources offered by quantum states of light.

More Details

Measurement and Simulation of the Magnetic Fields from a 555 Timer Integrated Circuit Using a Quantum Diamond Microscope and Finite-Element Analysis

Physical Review Applied

Kehayias, Pauli M.; Levine, E.V.; Basso, Luca B.; Henshaw, Jacob D.; Saleh Ziabari, Maziar S.; Titze, Michael T.; Haltli, Raymond A.; Okoro, Jazmine L.; Tibbetts, Denise R.; Udoni, Darlene M.; Bielejec, Edward S.; Lilly, Michael L.; Lu, Tzu-Ming L.; Schwindt, Peter S.; Mounce, Andrew M.

Quantum diamond microscope (QDM) magnetic field imaging is an emerging interrogation and diagnostic technique for integrated circuits (ICs). To date, the ICs measured with a QDM have been either too complex for us to predict the expected magnetic fields and benchmark the QDM performance or too simple to be relevant to the IC community. In this paper, we establish a 555 timer IC as a "model system"to optimize QDM measurement implementation, benchmark performance, and assess IC device functionality. To validate the magnetic field images taken with a QDM, we use a spice electronic circuit simulator and finite-element analysis (FEA) to model the magnetic fields from the 555 die for two functional states. We compare the advantages and the results of three IC-diamond measurement methods, confirm that the measured and simulated magnetic images are consistent, identify the magnetic signatures of current paths within the device, and discuss using this model system to advance QDM magnetic imaging as an IC diagnostic tool.

More Details

Density dependence of the excitation gaps in an undoped Si/SiGe double-quantum-well heterostructure

Applied Physics Letters

Chen, D.; Cai, S.; Hsu, N.W.; Huang, S.H.; Chuang, Y.; Nielsen, Erik N.; Li, J.Y.; Liu, C.W.; Lu, Tzu-Ming L.; Laroche, D.

We report low-temperature magneto-transport measurements of an undoped Si/SiGe asymmetric double quantum well heterostructure. The density in both layers is tuned independently utilizing top and bottom gates, allowing the investigation of quantum wells at both imbalanced and matched densities. Integer quantum Hall states at total filling factor ν T = 1 and ν T = 2 are observed in both density regimes, and the evolution of their excitation gaps is reported as a function of the density. The ν T = 1 gap evolution departs from the behavior generally observed for valley splitting in the single layer regime. Furthermore, by comparing the ν T = 2 gap to the single particle tunneling energy, Δ SAS, obtained from Schrödinger-Poisson (SP) simulations, evidence for the onset of spontaneous interlayer coherence is observed for a relative filling fraction imbalance smaller than ∼ 50 %.

More Details

Modeling and Assessment of Atomic Precision Advanced Manufacturing (APAM) Enabled Vertical Tunneling Field Effect Transistor

International Conference on Simulation of Semiconductor Processes and Devices, SISPAD

Gao, Xujiao G.; Mendez Granado, Juan P.; Lu, Tzu-Ming L.; Anderson, Evan M.; Campbell, DeAnna M.; Ivie, Jeffrey A.; Schmucker, Scott W.; Grine, Albert D.; Lu, Ping L.; Tracy, Lisa A.; Arghavani, Reza A.; Misra, Shashank M.

The atomic precision advanced manufacturing (APAM) enabled vertical tunneling field effect transistor (TFET) presents a new opportunity in microelectronics thanks to the use of ultra-high doping and atomically abrupt doping profiles. We present modeling and assessment of the APAM TFET using TCAD Charon simulation. First, we show, through a combination of simulation and experiment, that we can achieve good control of the gated channel on top of a phosphorus layer made using APAM, an essential part of the APAM TFET. Then, we present simulation results of a preliminary APAM TFET that predict transistor-like current-voltage response despite low device performance caused by using large geometry dimensions. Future device simulations will be needed to optimize geometry and doping to guide device design for achieving superior device performance.

More Details

Manipulation of Hole Spin Transport in Germanium

Lu, Tzu-Ming L.; Hutchins-Delgado, Troy A.; Lidsky, David A.

Downscaling of the silicon metal-oxide-semiconductor field-effect transistor technology is expected to reach a fundamental limit soon. A paradigm shift in computing is occurring. Spin field-effect transistors are considered a candidate architecture for next-generation microelectronics. Being able to leverage the existing infrastructure for silicon, a spin field-effect transistor technology based on group IV heterostructures will have unparalleled technical and economical advantages. For the same material platform reason, germanium hole quantum dots are also considered a competitive architecture for semiconductor-based quantum technology. In this project, we investigated several approaches to creating hole devices in germanium-based materials as well as injecting hole spins in such structures. We also explored the roles of hole injection in wet chemical etching of germanium. Our main results include the demonstration of germanium metal-oxide-semiconductor field-effect transistors operated at cryogenic temperatures, ohmic current-voltage characteristics in germanium/silicon-germanium heterostructures with ferromagnetic contacts at deep cryogenic temperatures and high magnetic fields, evaluation of the effects of surface preparation on carrier mobility in germanium/silicon- germanium heterostructures, and hole spin polarization through integrated permanent magnets. These results serve as essential components for fabricating next-generation germanium-based devices for microelectronics and quantum systems.

More Details

Leveraging Spin-Orbit Coupling in Ge/SiGe Heterostructures for Quantum Information Transfer

Bretz-Sullivan, Terence M.; Brickson, Mitchell I.; Foster, Natalie D.; Hutchins-Delgado, Troy A.; Lewis, Rupert; Lu, Tzu-Ming L.; Miller, Andrew J.; Srinivasa, Vanita; Tracy, Lisa A.; Wanke, Michael W.; Luhman, Dwight R.

Hole spin qubits confined to lithographically - defined lateral quantum dots in Ge/SiGe heterostructures show great promise. On reason for this is the intrinsic spin - orbit coupling that allows all - electric control of the qubit. That same feature can be exploited as a coupling mechanism to coherently link spin qubits to a photon field in a superconducting resonator, which could, in principle, be used as a quantum bus to distribute quantum information. The work reported here advances the knowledge and technology required for such a demonstration. We discuss the device fabrication and characterization of different quantum dot designs and the demonstration of single hole occupation in multiple devices. Superconductor resonators fabricated using an outside vendor were found to have adequate performance and a path toward flip-chip integration with quantum devices is discussed. The results of an optical study exploring aspects of using implanted Ga as quantum memory in a Ge system are presented.

More Details

FAIR DEAL Grand Challenge Overview

Allemang, Christopher R.; Anderson, Evan M.; Baczewski, Andrew D.; Bussmann, Ezra B.; Butera, Robert; Campbell, DeAnna M.; Campbell, Quinn C.; Carr, Stephen M.; Frederick, Esther; Gamache, Phillip G.; Gao, Xujiao G.; Grine, Albert D.; Gunter, Mathew M.; Halsey, Connor H.; Ivie, Jeffrey A.; Katzenmeyer, Aaron M.; Leenheer, Andrew J.; Lepkowski, William L.; Lu, Tzu-Ming L.; Mamaluy, Denis M.; Mendez Granado, Juan P.; Pena, Luis F.; Schmucker, Scott W.; Scrymgeour, David S.; Tracy, Lisa A.; Wang, George T.; Ward, Dan; Young, Steve M.

While it is likely practically a bad idea to shrink a transistor to the size of an atom, there is no arguing that it would be fantastic to have atomic-scale control over every aspect of a transistor – a kind of crystal ball to understand and evaluate new ideas. This project showed that it was possible to take a niche technique used to place dopants in silicon with atomic precision and apply it broadly to study opportunities and limitations in microelectronics. In addition, it laid the foundation to attaining atomic-scale control in semiconductor manufacturing more broadly.

More Details

Strain Effects on Rashba Spin–Orbit Coupling of 2D Hole Gases in GeSn/Ge Heterostructures

Advanced Materials

Tai, Chia-Tse; Chiu, Po-Yuan; Liu, Chia-You; Kao, Hsiang-Shun; Harris, Charles T.; Lu, Tzu-Ming L.; Hsieh, Chi-Ti; Chang, Shu-Wei; Li, Jiun-Yun

A demonstration of 2D hole gases in GeSn/Ge heterostructures with a mobility as high as 20 000 cm2 V–1 s–1 is given. Both the Shubnikov–de Haas oscillations and integer quantum Hall effect are observed, indicating high sample quality. The Rashba spin-orbit coupling (SOC) is investigated via magneto-transport. Further, a transition from weak localization to weak anti-localization is observed, which shows the tunability of the SOC strength by gating. The magneto-transport data are fitted to the Hikami–Larkin–Nagaoka formula. The phase-coherence and spin-relaxation times, as well as spin-splitting energy and Rashba coefficient of the k-cubic term, are extracted. Furthermore, the analysis reveals that the effects of strain and confinement potential at a high fraction of Sn suppress the Rashba SOC caused by the GeSn/Ge heterostructures.

More Details
Results 26–50 of 201
Results 26–50 of 201