Publications

Results 576–600 of 2,290

Search results

Jump to search filters

Attaining regularization length insensitivity in phase-field models of ductile failure

Computer Methods in Applied Mechanics and Engineering

Talamini, Brandon T.; Tupek, Michael R.; Stershic, Andrew J.; Hu, Tianchen; Laros, James H.; Ostien, Jakob O.; Dolbow, John E.

A cohesive phase-field model of ductile fracture in a finite-deformation setting is presented. The model is based on a free-energy function in which both elastic and plastic work contributions are coupled to damage. Using a strictly variational framework, the field evolution equations, damage kinetics, and flow rule are jointly derived from a scalar least-action principle. Particular emphasis is placed on the use of a rational function for the stress degradation that maintains a fixed effective strength with decreasing regularization length. The model is employed to examine crack growth in pure mode-I problems through the generation of crack growth resistance (J-R) curves. In contrast to alternative models, the current formulation gives rise to J-R curves that are insensitive to the regularization length. Numerical evidence suggests convergence of local fields with respect to diminishing regularization length as well.

More Details

Repository-Scale Performance Assessment Incorporating Postclosure Criticality

Price, Laura L.; Laros, James H.; Basurto, Eduardo B.; Alsaed, A.A.; Cardoni, Jeffrey N.; Nole, Michael A.; Prouty, Jeralyn L.; Sanders, Charlotta; Davidson, Greg; Swinney, Mathew; Bhatt, Santosh; Gonzalez, Evan; Kiedrowski, B.

A key objective of the United States Department of Energy’s (DOE) Office of Nuclear Energy’s Spent Fuel and Waste Science and Technology Campaign is to better understand the technical basis, risks, and uncertainty associated with the safe and secure disposition of spent nuclear fuel (SNF) and high-level radioactive waste. Commercial nuclear power generation in the United States has resulted in thousands of metric tons of SNF, the disposal of which is the responsibility of the DOE (Nuclear Waste Policy Act of 1982, as amended). Any repository licensed to dispose of SNF must meet requirements regarding the long-term performance of that repository. For an evaluation of the long-term performance of the repository, one of the events that may need to be considered is the SNF achieving a critical configuration during the postclosure period. Of particular interest is the potential behavior of SNF in dual-purpose canisters (DPCs), which are currently licensed and being used to store and transport SNF but were not designed for permanent geologic disposal. A study has been initiated to examine the potential consequences, with respect to long-term repository performance, of criticality events that might occur during the postclosure period in a hypothetical repository containing DPCs. The first phase (a scoping phase) consisted of developing an approach to creating the modeling tools and techniques that may eventually be needed to either include or exclude criticality from a performance assessment (PA) as appropriate; this scoping phase is documented in Price et al. (2019a). In the second phase, that modeling approach was implemented and future work was identified, as documented in Price et al. (2019b). This report gives the results of a repository-scale PA examining the potential consequences of postclosure criticality, as well as the information, modeling tools, and techniques needed to incorporate the effects of postclosure criticality in the PA.

More Details

Integrated Multiphysics Modeling of Environmentally Assisted Brittle Fracture

Rimsza, Jessica R.; Jones, Reese E.; Trageser, Jeremy T.; Hogancamp, Joshua H.; Laros, James H.; Mitts, Cody A.; Mitchell, Chven A.; Taha, Mahmoud R.; Raby, Patience; Regueiro, Richard A.; Jadaan, Dhafer

Brittle materials, such as cement, compose major portions of built infrastructure and are vulnerable to degradation and fracture from chemo-mechanical effects. Currently, methods of modeling infrastructure do not account for the presence of a reactive environment, such as water, on the acceleration of failure. Here, we have developed methodologies and models of concrete and cement fracture that account for varying material properties, such as strength, shrinkage, and fracture toughness due to degradation or hydration. The models have been incorporated into peridynamics, non-local continuum mechanics methodology, that can model intersecting and branching brittle fracture that occurs in multicomponent brittle materials, such as concrete. Through development of new peridynamic capabilities, decalcification of cement and differential shrinkage in clay-cement composites have been evaluated, along with exemplar problems in nuclear waste cannisters and wellbores. We have developed methods to simulate multiphase phenomena in cement and cement-composite materials for energy and infrastructure applications.

More Details

Relativistic Two-Fluid Electrodynamics Using Implicit-Explicit Discontinuous-Galerkin Methods

IEEE International Conference on Plasma Science

Laros, James H.; Beckwith, Kristian B.

Relativistic weakly collisional plasmas describe a variety of astrophysical and terrestrial plasmas, ranging from relativistic outflows from active galactic nuclei to high power microwave and magnetically insulated transmission lines. In many such systems, high fidelity kinetic models are computationally infeasible due large dynamical scales and long dynamical times. Conversely, most fluid based models such as magnetohydrodynamics (MHD) miss many relevant aspects of plasma behavior. Between these two models, two fluid methods - where the electrons and ions are evolved as separate, coupled fluids - capture many of the plasma physics of a kinetic code while remaining computational tractable for large systems.

More Details

Deep-learning-enabled Bayesian inference of fuel magnetization in magnetized liner inertial fusion

Physics of Plasmas

Laros, James H.; Knapp, Patrick K.; Slutz, Stephen A.; Schmit, Paul S.; Chandler, Gordon A.; Gomez, Matthew R.; Harvey-Thompson, Adam J.; Mangan, Michael M.; Ampleford, David A.; Beckwith, Kristian B.

Fuel magnetization in magneto-inertial fusion (MIF) experiments improves charged burn product confinement, reducing requirements on fuel areal density and pressure to achieve self-heating. By elongating the path length of 1.01 MeV tritons produced in a pure deuterium fusion plasma, magnetization enhances the probability for deuterium-tritium reactions producing 11.8−17.1 MeV neutrons. Nuclear diagnostics thus enable a sensitive probe of magnetization. Characterization of magnetization, including uncertainty quantification, is crucial for understanding the physics governing target performance in MIF platforms, such as magnetized liner inertial fusion (MagLIF) experiments conducted at Sandia National Laboratories, Z-facility. We demonstrate a deep-learned surrogate of a physics-based model of nuclear measurements. A single model evaluation is reduced from CPU hours on a high-performance computing cluster down to ms on a laptop. This enables a Bayesian inference of magnetization, rigorously accounting for uncertainties from surrogate modeling and noisy nuclear measurements. The approach is validated by testing on synthetic data and comparing with a previous study. We analyze a series of MagLIF experiments systematically varying preheat, resulting in the first ever systematic experimental study of magnetic confinement properties of the fuel plasma as a function of fundamental inputs on any neutron-producing MIF platform. We demonstrate that magnetization decreases from B ∼0.5 to B MG cm as laser preheat energy deposited increases from preheat ∼460 J to E preheat ∼1.4 kJ. This trend is consistent with 2D LASNEX simulations showing Nernst advection of the magnetic field out of the hot fuel and diffusion into the target liner.

More Details

Development and Use of an Ultra-High Resolution Electron Scattering Apparatus

Frank, Jonathan H.; Laros, James H.; Jana, Irina J.; Huang, Erxiong H.; Chandler, D.W.

In this LDRD project, we developed a versatile capability for high-resolution measurements of electron scattering processes in gas-phase molecules, such as ionization, dissociation, and electron attachment/detachment. This apparatus is designed to advance fundamental understanding of these processes and to inform predictions of plasmas associated with applications such as plasma-assisted combustion, neutron generation, re-entry vehicles, and arcing that are critical to national security. We use innovative coupling of electron-generation and electron-imaging techniques that leverages Sandia’s expertise in ion/electron imaging methods. Velocity map imaging provides a measure of the kinetic energies of electrons or ion products from electron scattering in an atomic or molecular beam. We designed, constructed, and tested the apparatus. Tests include dissociative electron attachment to O2 and SO2, as well as a new method for studying laser-initiated plasmas. This capability sets the stage for new studies in dynamics of electron scattering processes, including scattering from excited-state atoms and molecules.

More Details

Integrated System and Application Continuous Performance Monitoring and Analysis Capability

Aaziz, Omar R.; Allan, Benjamin A.; Brandt, James M.; Cook, Jeanine C.; Devine, Karen D.; Elliott, James E.; Gentile, Ann C.; Hammond, Simon D.; Kelley, Brian M.; Lopatina, Lena; Moore, Stan G.; Olivier, Stephen L.; Laros, James H.; Poliakoff, David Z.; Pawlowski, Roger P.; Regier, Phillip A.; Schmitz, Mark E.; Schwaller, Benjamin S.; Surjadidjaja, Vanessa S.; Swan, Matthew S.; Tucker, Nick; Tucker, Thomas; Vaughan, Courtenay T.; Walton, Sara P.

Scientific applications run on high-performance computing (HPC) systems are critical for many national security missions within Sandia and the NNSA complex. However, these applications often face performance degradation and even failures that are challenging to diagnose. To provide unprecedented insight into these issues, the HPC Development, HPC Systems, Computational Science, and Plasma Theory & Simulation departments at Sandia crafted and completed their FY21 ASC Level 2 milestone entitled "Integrated System and Application Continuous Performance Monitoring and Analysis Capability." The milestone created a novel integrated HPC system and application monitoring and analysis capability by extending Sandia's Kokkos application portability framework, Lightweight Distributed Metric Service (LDMS) monitoring tool, and scalable storage, analysis, and visualization pipeline. The extensions to Kokkos and LDMS enable collection and storage of application data during run time, as it is generated, with negligible overhead. This data is combined with HPC system data within the extended analysis pipeline to present relevant visualizations of derived system and application metrics that can be viewed at run time or post run. This new capability was evaluated using several week-long, 290-node runs of Sandia's ElectroMagnetic Plasma In Realistic Environments ( EMPIRE ) modeling and design tool and resulted in 1TB of application data and 50TB of system data. EMPIRE developers remarked this capability was incredibly helpful for quickly assessing application health and performance alongside system state. In short, this milestone work built the foundation for expansive HPC system and application data collection, storage, analysis, visualization, and feedback framework that will increase total scientific output of Sandia's HPC users.

More Details

SAGE Intrusion Detection System: Sensitivity Analysis Guided Explainability for Machine Learning

Smith, Michael R.; Laros, James H.; Ames, Arlo L.; Carey, Alycia N.; Cueller, Christopher R.; Field, Richard V.; Maxfield, Trevor; Mitchell, Scott A.; Morris, Elizabeth S.; Moss, Blake C.; Nyre-Yu, Megan N.; Rushdi, Ahmad R.; Stites, Mallory C.; Smutz, Charles S.; Zhou, Xin Z.

This report details the results of a three-fold investigation of sensitivity analysis (SA) for machine learning (ML) explainability (MLE): (1) the mathematical assessment of the fidelity of an explanation with respect to a learned ML model, (2) quantifying the trustworthiness of a prediction, and (3) the impact of MLE on the efficiency of end-users through multiple users studies. We focused on the cybersecurity domain as the data is inherently non-intuitive. As ML is being using in an increasing number of domains, including domains where being wrong can elicit high consequences, MLE has been proposed as a means of generating trust in a learned ML models by end users. However, little analysis has been performed to determine if the explanations accurately represent the target model and they themselves should be trusted beyond subjective inspection. Current state-of-the-art MLE techniques only provide a list of important features based on heuristic measures and/or make certain assumptions about the data and the model which are not representative of the real-world data and models. Further, most are designed without considering the usefulness by an end-user in a broader context. To address these issues, we present a notion of explanation fidelity based on Shapley values from cooperative game theory. We find that all of the investigated MLE explainability methods produce explanations that are incongruent with the ML model that is being explained. This is because they make critical assumptions about feature independence and linear feature interactions for computational reasons. We also find that in deployed, explanations are rarely used due to a variety of reason including that there are several other tools which are trusted more than the explanations and there is little incentive to use the explanations. In the cases when the explanations are used, we found that there is the danger that explanations persuade the end users to wrongly accept false positives and false negatives. However, ML model developers and maintainers find the explanations more useful to help ensure that the ML model does not have obvious biases. In light of these findings, we suggest a number of future directions including developing MLE methods that directly model non-linear model interactions and including design principles that take into account the usefulness of explanations to the end user. We also augment explanations with a set of trustworthiness measures that measure geometric aspects of the data to determine if the model output should be trusted.

More Details

Fuel Fabrication and Single Stage Aqueous Process Modeling

Laros, James H.; TACONI, ANNA M.; Honnold, Philip H.; Cipiti, Benjamin B.

The Material Protection, Accounting, and Control Technologies program utilizes modeling and simulation to assess Material Control and Accountability (MC&A) concerns for a variety of nuclear facilities. Single analyst tools allow for rapid design and evaluation of advanced approaches for new and existing nuclear facilities. A low enriched uranium (LEU) fuel conversion and fabrication facility simulator is developed to assist with MC&A for existing facilities. Measurements are added to the model (consistent with current best practices). Material balance calculations and statistical tests are also added to the model. In addition, scoping work is performed for developing a single stage aqueous reprocessing model. Preliminary results are presented and discussed, and next steps outlined.

More Details

Update on the Simulation of Commercial Drying of Spent Nuclear Fuel

Durbin, S.G.; Lindgren, Eric R.; Pulido, Ramon P.; Laros, James H.; Fasano, Raymond E.

The purpose of this report is to document improvements in the simulation of commercial vacuum drying procedures at the Nuclear Energy Work Complex at Sandia National Laboratories. Validation of the extent of water removal in a dry spent nuclear fuel storage system based on drying procedures used at nuclear power plants is needed to close existing technical gaps. Operational conditions leading to incomplete drying may have potential impacts on the fuel, cladding, and other components in the system. A general lack of data suitable for model validation of commercial nuclear canister drying processes necessitates additional, well-designed investigations of drying process efficacy and water retention. Scaled tests that incorporate relevant physics and well-controlled boundary conditions are essential to provide insight and guidance to the simulation of prototypic systems undergoing drying processes.

More Details

Preliminary Radioisotope Screening for Off-site Consequence Assessment of Advanced Non-LWR Systems

Andrews, Nathan C.; Laros, James H.; TACONI, ANNA M.; Leute, Jennifer E.

Currently a set of 71 radionuclides are accounted for in off-site consequence analysis for LWRs. Radionuclides of dose consequence are expected to change for non-LWRs, with radionuclides of interest being type-specific. This document identifies an expanded set of radionuclides that may need to be accounted for in multiple non-LWR systems: high temperature gas reactors (HTGRs); fluoride-salt-cooled high-temperature reactors (FHRs); thermal-spectrum fluoride-based molten salt reactors (MSRs); fast-spectrum chloride-based MSRs; and, liquid metal fast reactors with metallic fuel (LMRs) Specific considerations are provided for each reactor type in Chapter 2 through Chapter 5, and a summary of all recommendations is provided in Chapter 6. All identified radionuclides are already incorporated within the MACCS software, yet the development of tritium-specific and carbon-specific chemistry models are recommended.

More Details

Pitch Variation Experiments in Water-Moderated Square-Pitched U(6.90)O2 Fuel Rod Lattices with Fuel to Water Volume Ratios Spanning 0.08 to 0.67

Laros, James H.

The twenty-seven critical experiments in this series were performed in 2020 in the SCX at the Sandia Pulsed Reactor Facility. The experiments are grouped by fuel rod pitch. Case 1 is a base case with a pitch of 0.8001 cm and no water holes in the array. Cases 2 through 6 have the same pitch as Case 1 but contain various configurations with water holes, providing slight variations in the fuel-to-water ratio. Similarly, Case 7 is a base case with a pitch of 0.854964 cm and no water holes in the array. Cases 8 through 11 have the same pitch as Case 7 but contain various configurations with water holes. Cases 12 through 15 have a pitch of 1.131512 cm and differ according to the number of water holes in the array, with Case 12 having no water holes. Cases 16 through 19 have a pitch of 1.209102 cm and differ according to number of water holes in the array, with Case 16 having no water holes. Cases 20 through 23 have a pitch of 1.6002 cm and differ according to number of water holes in the array, with Case 20 having no water holes. Cases 24 through 27 have a pitch of 1.709928 cm and differ according to number of water holes in the array, with Case 24 having no water holes. As the experiment case number increases, the fuel-to-water volume ratio decreases.

More Details

GDSA Repository Systems Analysis Investigations in FY2021

LaForce, Tara; Basurto, Eduardo B.; Chang, Kyung W.; Jayne, Richard S.; Leone, Rosemary C.; Nole, Michael A.; Laros, James H.; Stein, Emily S.

The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy Office of Nuclear Energy, Office of Spent Fuel and Waste Disposition (SFWD), has been conducting research and development on generic deep geologic disposal systems (i.e., geologic repositories). This report describes specific activities in the Fiscal Year (FY) 2021 associated with the Geologic Disposal Safety Assessment (GDSA) Repository Systems Analysis (RSA) work package within the SFWST Campaign. The overall objective of the GDSA RSA work package is to develop generic deep geologic repository concepts and system performance assessment (PA) models in several host-rock environments, and to simulate and analyze these generic repository concepts and models using the GDSA Framework toolkit, and other tools as needed.

More Details

Optical Imaging on Z LDRD: Design and Development of Self-Emission and Debris Imagers

Yager-Elorriaga, David A.; Montoya, Michael M.; Bliss, David E.; Ball, Christopher R.; Atencio, Phillip M.; Carpenter, Brian C.; Fuerschbach, Kyle H.; Fulford, Karin W.; Lamppa, Derek C.; Lowinske, Michael C.; Lucero, Larry M.; Patel, Sonal P.; Romero, Anthony R.; Laros, James H.; Breznik-Young, Bonnie B.

We present an overview of the design and development of optical self-emission and debris imaging diagnostics for the Z Machine at Sandia National Laboratories. These diagnostics were designed and implemented to address several gaps in our understanding of visibly emitting phenomenon on Z and the post-shot debris environment. Optical emission arises from plasmas that form on the transmission line that delivers energy to Z loads and on the Z targets themselves; however, the dynamics of these plasmas are difficult to assess without imaging data. Addressing this, we developed a new optical imager called SEGOI (Self-Emission Gated Optical Imager) that leverages the eight gated optical imagers and two streak cameras of the Z Line VISAR system. SEGOI is a low cost, side-on imager with a 1 cm field of view and 30-50 µm spatial resolution, sensitive to green light (540-600 nm). This report outlines the design considerations and development of this diagnostic and presents an overview of the first diagnostic data acquired from four experimental campaigns. SEGOI was fielded on power flow experiments to image plasmas forming on and between transmission lines, on an inertial confinement fusion experiment called the Dynamic Screw Pinch to image low density plasmas forming on return current posts, on an experiment designed to measure the magneto Rayleigh-Taylor instability to image the instability bubble trajectory and self-emission structures, and finally on a Magnetized Liner Inertial Fusion (MagLIF) experiment to image the emission from the target. The second diagnostic developed, called DINGOZ (Debris ImagiNG on Z), was designed to improve our understanding of the post-shot debris environment. DINGOZ is an airtight enclosure that houses electronics and batteries to operate a high-speed (10-400 kfps) camera in the Z Machine center section. We report on the design considerations of this new diagnostic and present the first high-speed imaging data of the post-shot debris environment on Z.

More Details
Results 576–600 of 2,290
Results 576–600 of 2,290