Publications

Results 451–475 of 2,290

Search results

Jump to search filters

Response of a Pressurized Water Reactor Dashpot Region to Commercial Drying Cycles

Pulido, Ramon P.; TACONI, ANNA M.; Laros, James H.; Fasano, Raymond E.; Laros, James H.; Baigas, Beau T.; Durbin, S.G.

The purpose of this report is to document updates to the simulation of commercial vacuum drying procedures at the Nuclear Energy Work Complex at Sandia National Laboratories. Validation of the extent of water removal in a dry spent nuclear fuel storage system based on drying procedures used at nuclear power plants is needed to close existing technical gaps. Operational conditions leading to incomplete drying may have potential impacts on the fuel, cladding, and other components in the system. A general lack of data suitable for model validation of commercial nuclear canister drying processes necessitates additional, well-designed investigations of drying process efficacy and water retention. Scaled tests that incorporate relevant physics and well-controlled boundary conditions are essential to provide insight and guidance to the simulation of prototypic systems undergoing drying processes. This report documents testing updates for the Dashpot Drying Apparatus (DDA), an apparatus constructed at a reduced scale with multiple Pressurized Water Reactor (PWR) fuel rod surrogates and a single guide tube dashpot. This apparatus is fashioned from a truncated 5×5 section of a prototypic 17×17 PWR fuel skeleton and includes the lowest segment of a single guide tube, often referred to as the dashpot region. The guide tube in this assembly is open and allows for insertion of a poison rod (neutron absorber) surrogate.

More Details

Sierra/SD - User's Manual - 5.6

Laros, James H.; Bunting, Gregory B.; Chen, Mark J.; Crane, Nathan K.; Day, David M.; Dohrmann, Clark R.; Joshi, Sidharth S.; Lindsay, Payton L.; Plews, Julia A.; Stevens, B.L.; Vo, Johnathan V.

Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high-fidelity, validated models used in modal, vibration, static and shock analysis of weapons systems. This document provides a user's guide to the input for Sierra/SD. Details of input specifications for the different solution types, output options, element types and parameters are included. The appendices contain detailed examples, and instructions for running the software on parallel platforms.

More Details

Seascape Interface Control Document

Moore, Emily R.; Pitts, Todd A.; Laros, James H.; Qiu, Henry Q.; Ross, Leon C.; Danford, Forest L.; Pitts, Christopher W.

This paper serves as the Interface Control Document (ICD) for the Seascape automated test harness developed at Sandia National Laboratories. The primary purposes of the Seascape system are: (1) provide a place for accruing large, curated, labeled data sets useful for developing and evaluating detection and classification algorithms (including, but not limited to, supervised machine learning applications) (2) provide an automated structure for specifying, running and generating reports on algorithm performance. Seascape uses GitLab, Nexus, Solr, and Banana, open source software, together with code written in the Python language, to automatically provision and configure computational nodes, queue up jobs to accomplish algorithms test runs against the stored data sets, gather the results and generate reports which are then stored in the Nexus artifact server.

More Details

Formal verification and validation of run-to-completion style state charts using Event-B

Innovations in Systems and Software Engineering

Hulette, Geoffrey C.; Laros, James H.; Armstrong, Robert C.; Snook, Colin; Hoang, T.S.; Butler, Michael

State chart notations with ‘run to completion’ semantics are popular with engineers for designing controllers that react to environment events with a sequence of state transitions but lack formal refinement and rigorous verification methods. State chart models are typically used to design complex control systems that respond to environmental triggers with a sequential process. The model is usually constructed at a concrete level and verified and validated using animation techniques relying on human judgement. Event-B, on the other hand, is based on refinement from an initial abstraction and is designed to make formal verification by automatic theorem provers feasible. Abstraction and formal verification provide greater assurance that critical (e.g. safety or security) properties are not violated by the control system. In this paper, we introduce a notion of refinement into a ‘run to completion’ state chart modelling notation and leverage Event-B’s tool support for theorem proving. We describe the difficulties in translating ‘run to completion’ semantics into Event-B refinements and suggest a solution. We illustrate our approach and show how models can be validated at different refinement levels using our scenario checker animation tools. We show how critical invariant properties can be verified by proof despite the reactive nature of the system and how behavioural aspects of the system can be verified by testing the expected reactions using a temporal logic, model checking approach. To verify liveness, we outline a proof that the run to completion is deadlock-free and converges to complete the run.

More Details

Information Leakage Analysis Using a Co-Design-Based Fault Injection Technique on a RISC-V Microprocessor

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

Plusquellic, Jim; Laros, James H.; Mannos, Tom M.; Dziki, Brian

The RISC-V instruction set architecture open licensing policy has spawned a hive of development activity, making a range of implementations publicly available. The environments in which RISC-V operates have expanded correspondingly, driving the need for a generalized approach to evaluating the reliability of RISC-V implementations under adverse operating conditions or after normal wear-out periods. Fault injection (FI) refers to the process of changing the state of registers or wires, either permanently or momentarily, and then observing execution behavior. The analysis provides insight into the development of countermeasures that protect against the leakage or corruption of sensitive information, which might occur because of unexpected execution behavior. In this article, we develop a hardware-software co-design architecture that enables fast, configurable fault emulation and utilize it for information leakage and data corruption analysis. Modern system-on-chip FPGAs enable building an evaluation platform, where control elements run on a processor(s) (PS) simultaneously with the target design running in the programmable logic (PL). Software components of the FI system introduce faults and report execution behavior. A pair of RISC-V FI-instrumented implementations are created and configured to execute the Advanced Encryption Standard and Twister algorithms. Key and plaintext information leakage and degraded pseudorandom sequences are both observed in the output for a subset of the emulated faults.

More Details

Simulation of Stark-broadened Hydrogen Balmer-line Shapes for da White Dwarf Synthetic Spectra

Astrophysical Journal

Cho, Patricia B.; Gomez, T.A.; Laros, James H.; Dunlap, B.H.; Fitz Axen, M.; Hobbs, B.; Hubeny, I.; Winget, D.E.

White dwarfs (WDs) are useful across a wide range of astrophysical contexts. The appropriate interpretation of their spectra relies on the accuracy of WD atmosphere models. One essential ingredient of atmosphere models is the theory used for the broadening of spectral lines. To date, the models have relied on Vidal et al., known as the unified theory of line broadening (VCS). There have since been advancements in the theory; however, the calculations used in model atmosphere codes have only received minor updates. Meanwhile, advances in instrumentation and data have uncovered indications of inaccuracies: spectroscopic temperatures are roughly 10% higher and spectroscopic masses are roughly 0.1 M higher than their photometric counterparts. The evidence suggests that VCS-based treatments of line profiles may be at least partly responsible. Gomez et al. developed a simulation-based line-profile code Xenomorph using an improved theoretical treatment that can be used to inform questions around the discrepancy. However, the code required revisions to sufficiently decrease noise for use in model spectra and to make it computationally tractable and physically realistic. In particular, we investigate three additional physical effects that are not captured in the VCS calculations: ion dynamics, higher-order multipole expansion, and an expanded basis set. We also implement a simulation-based approach to occupation probability. The present study limits the scope to the first three hydrogen Balmer transitions (Hα, Hβ, and Hγ). We find that screening effects and occupation probability have the largest effects on the line shapes and will likely have important consequences in stellar synthetic spectra.

More Details

Scoping Analysis of MACCS Modeling Improvements for the Study of Protective Action Recommendations

Laros, James H.; Walton, Fotini W.; Dise, Joshua T.; Leute, Jennifer E.

In late 2004, the U.S. Nuclear Regulatory Commission (NRC) initiated a project to analyze the relative efficacy of alternative protective action strategies in reducing consequences to the public from a spectrum of nuclear power plant core melt accidents. The study is documented in NUREG/CR-6953, “Review of NUREG-0654, Supplement 3, ‘Criteria for Protective Action Recommendations for Severe Accidents,’” Volumes 1, 2, and 3. The Protective Action Recommendations (PAR) study provided a technical basis for enhancing the protective action guidance contained in Supplement 3, “Guidance for Protective Action Strategies,” to NUREG-0654/FEMA-REP-1, Rev. 1, “Criteria for Preparation and Evaluation of Radiological Emergency Response Plans and Preparedness in Support of Nuclear Power Plants, ” dated November 2011. In the time since, a number of important changes and additions have been made to the MACCS code suite, the nuclear accident consequence analysis code used to perform the study. The purpose of this analysis is to determine whether the MACCS results used in the PAR study would be different given recent changes to the MACCS code suite and input parameter guidance. Updated parameters that were analyzed include cohorts, keyhole evacuation, shielding and exposure parameters, compass sector resolution, and a range of source terms from rapidly progressing accidents. Results indicate that using updated modeling assumptions and capabilities may lead to a decrease in predicted health consequences for those within the emergency planning zone compared to the original PAR study.

More Details

Results from Invoking Artificial Neural Networks to Measure Insider Threat Detection & Mitigation

Digital Threats: Research and Practice

Williams, Adam D.; Laros, James H.; Shoman, Nathan; Charlton, William S.

Advances on differentiating between malicious intent and natural "organizational evolution"to explain observed anomalies in operational workplace patterns suggest benefit from evaluating collective behaviors observed in the facilities to improve insider threat detection and mitigation (ITDM). Advances in artificial neural networks (ANN) provide more robust pathways for capturing, analyzing, and collating disparate data signals into quantitative descriptions of operational workplace patterns. In response, a joint study by Sandia National Laboratories and the University of Texas at Austin explored the effectiveness of commercial artificial neural network (ANN) software to improve ITDM. This research demonstrates the benefit of learning patterns of organizational behaviors, detecting off-normal (or anomalous) deviations from these patterns, and alerting when certain types, frequencies, or quantities of deviations emerge for improving ITDM. Evaluating nearly 33,000 access control data points and over 1,600 intrusion sensor data points collected over a nearly twelve-month period, this study's results demonstrated the ANN could recognize operational patterns at the Nuclear Engineering Teaching Laboratory (NETL) and detect off-normal behaviors - suggesting that ANNs can be used to support a data-analytic approach to ITDM. Several representative experiments were conducted to further evaluate these conclusions, with the resultant insights supporting collective behavior-based analytical approaches to quantitatively describe insider threat detection and mitigation.

More Details

Performance and electret charge of N95 respirators after decontamination [Slides]

Grillet, Anne M.; Storch, Steven M.; Nemer, Martin N.; Sanchez, A.L.; Laros, James H.; Piekos, Edward S.; Hurwitz, Ivy; Perkins, Douglas J.

Filtration, pressure drop and quantitative fit of N95 respirators were robust to several decontamination methods including vaporous hydrogen peroxide, wet heat, bleach, and ultraviolet light. Bleach may not have penetrated the hydrophobic outer layers of the N95 respirator. Isopropyl alcohol and detergent both severely degraded the electrostatic charge of the electret filtration layer. First data in N95 respirators that the loss of filtration efficiency was directly correlated with loss of surface potential on the filtration layer. The pressure drop was unchanged, so loss of filtration efficacy would not be apparent during a user seal check. Mechanical straps degrade with repeated mechanical cycling during extended use. Decontamination did not appear to degrade the elastic straps. Significant loss of strap elasticity would be apparent during a user negative pressure seal check.

More Details

Hydrogen Line Shape Uncertainties in White Dwarf Model Atmospheres

Frontiers in Astronomy and Space Sciences

Laros, James H.; Dunlap, B.H.; Cho, Patricia B.; Gomez, T.A.

For isolated white dwarf (WD) stars, fits to their observed spectra provide the most precise estimates of their effective temperatures and surface gravities. Even so, recent studies have shown that systematic offsets exist between such spectroscopic parameter determinations and those based on broadband photometry. These large discrepancies (10% in Teff, 0.1 M⊙ in mass) provide scientific motivation for reconsidering the atomic physics employed in the model atmospheres of these stars. Recent simulation work of ours suggests that the most important remaining uncertainties in simulation-based calculations of line shapes are the treatment of 1) the electric field distribution and 2) the occupation probability (OP) prescription. We review the work that has been done in these areas and outline possible avenues for progress.

More Details
Results 451–475 of 2,290
Results 451–475 of 2,290