Publications

Results 51–100 of 286

Search results

Jump to search filters

Sub-micrometer epsilon-near-zero electroabsorption modulators enabled by high-mobility cadmium oxide

IEEE Photonics Journal (Online)

Campione, Salvatore; Wood, Michael G.; Serkland, Darwin K.; Parameswaran, Sivasubramanian; Ihlefeld, Jon F.; Luk, Ting S.; Wendt, Joel R.; Geib, Kent; Keeler, Gordon A.

Here, epsilon-near-zero materials provide a new path for tailoring light-matter interactions at the nanoscale. In this paper, we analyze a compact electroabsorption modulator based on epsilon-near-zero confinement in transparent conducting oxide films. The non-resonant modulator operates through field-effect carrier density tuning. We compare the performance of modulators composed of two different conducting oxides, namely indium oxide (In2O3) and cadmium oxide (CdO), and show that better modulation performance is achieved when using high-mobility (i.e. low-loss) epsilon-near-zero materials such as CdO. In particular, we show that non-resonant electroabsorption modulators with sub-micron lengths and greater than 5 dB extinction ratios may be achieved through the proper selection of high-mobility transparent conducting oxides, opening a path for device miniaturization and increased modulation depth.

More Details

Single-electron-occupation metal-oxide-semiconductor quantum dots formed from efficient poly-silicon gate layout

Physical Review Applied

Carroll, M.S.; Rochette, Sophie; Rudolph, Martin; Roy, A.M.; Curry, Matthew; Ten Eyck, Gregory A.; Manginell, Ronald; Wendt, Joel R.; Pluym, Tammy; Carr, Stephen M.; Ward, Daniel R.; Lilly, Michael; Pioro-Ladriere, Michel

We introduce a silicon metal-oxide-semiconductor quantum dot structure that achieves dot-reservoir tunnel coupling control without a dedicated barrier gate. The elementary structure consists of two accumulation gates separated spatially by a gap, one gate accumulating a reservoir and the other a quantum dot. Control of the tunnel rate between the dot and the reservoir across the gap is demonstrated in the single electron regime by varying the reservoir accumulation gate voltage while compensating with the dot accumulation gate voltage. The method is then applied to a quantum dot connected in series to source and drain reservoirs, enabling transport down to the single electron regime. Finally, tuning of the valley splitting with the dot accumulation gate voltage is observed. This split accumulation gate structure creates silicon quantum dots of similar characteristics to other realizations but with less electrodes, in a single gate stack subtractive fabrication process that is fully compatible with silicon foundry manufacturing.

More Details

Probing low noise at the MOS interface with a spin-orbit qubit

arXiv.org

Jock, Ryan M.; Jacobson, Noah T.; Harvey-Collard, Patrick; Mounce, Andrew M.; Srinivasa, Vanita; Ward, Daniel R.; Anderson, John M.; Manginell, Ronald; Wendt, Joel R.; Rudolph, Martin; Pluym, Tammy; Foulk, James W.; Baczewski, Andrew D.; Witzel, Wayne M.; Carroll, M.S.

The silicon metal-oxide-semiconductor (MOS) material system is technologically important for the implementation of electron spin-based quantum information technologies. Researchers predict the need for an integrated platform in order to implement useful computation, and decades of advancements in silicon microelectronics fabrication lends itself to this challenge. However, fundamental concerns have been raised about the MOS interface (e.g. trap noise, variations in electron g-factor and practical implementation of multi-QDs). Furthermore, two-axis control of silicon qubits has, to date, required the integration of non-ideal components (e.g. microwave strip-lines, micro-magnets, triple quantum dots, or introduction of donor atoms). In this paper, we introduce a spin-orbit (SO) driven singlet- triplet (ST) qubit in silicon, demonstrating all-electrical two-axis control that requires no additional integrated elements and exhibits charge noise properties equivalent to other more model, but less commercially mature, semiconductor systems. We demonstrate the ability to tune an intrinsic spin-orbit interface effect, which is consistent with Rashba and Dresselhaus contributions that are remarkably strong for a low spin-orbit material such as silicon. The qubit maintains the advantages of using isotopically enriched silicon for producing a quiet magnetic environment, measuring spin dephasing times of 1.6 μs using 99.95% 28Si epitaxy for the qubit, comparable to results from other isotopically enhanced silicon ST qubit systems. This work, therefore, demonstrates that the interface inherently provides properties for two-axis control, and the technologically important MOS interface does not add additional detrimental qubit noise. isotopically enhanced silicon ST qubit systems

More Details

Coupling MOS quantum dot and phosphorous donor qubit systems

Technical Digest - International Electron Devices Meeting, IEDM

Rudolph, Martin; Jock, Ryan M.; Jacobson, Noah T.; Wendt, Joel R.; Pluym, Tammy; Dominguez, Jason; Ten Eyck, Gregory A.; Manginell, Ronald; Lilly, Michael; Carroll, M.S.; Harvey-Collard, P.

Si-MOS based QD qubits are attractive due to their similarity to the current semiconductor industry. We introduce a highly tunable MOS foundry compatible qubit design that couples an electrostatic quantum dot (QD) with an implanted donor. We show for the first time coherent two-axis control of a two-electron spin logical qubit that evolves under the QD-donor exchange interaction and the hyperfine interaction with the donor nucleus. The two interactions are tuned electrically with surface gate voltages to provide control of both qubit axes. Qubit decoherence is influenced by charge noise, which is of similar strength as epitaxial systems like GaAs and Si/SiGe.

More Details

High-mobility transparent conducting oxides for compact epsilon-near-zero silicon integrated optical modulators

Optics InfoBase Conference Papers

Wood, Michael G.; Campione, Salvatore; Serkland, Darwin K.; Parameswaran, Sivasubramanian; Ihlefeld, Jon F.; Luk, Ting S.; Wendt, Joel R.; Geib, Kent M.; Keeler, Gordon A.

We study the role of carrier mobility in transparent conducting oxides integrated into epsilon-near-zero modulators. High-mobility materials including CdO enable sub-micron length electroabsorption modulators through >4dB/μm extinction ratios.

More Details

Broken Symmetry Dielectric Resonators for High Quality Factor Fano Metasurfaces

ACS Photonics

Sinclair, Michael B.; Campione, Salvatore; Liu, Sheng; Basilio, Lorena I.; Warne, Larry K.; Langston, William L.; Luk, Ting S.; Reno, John L.; Wendt, Joel R.; Keeler, Gordon A.

We present a new approach to dielectric metasurface design that relies on a single resonator per unit cell and produces robust, high quality factor Fano resonances. Our approach utilizes symmetry breaking of highly symmetric resonator geometries, such as cubes, to induce couplings between the otherwise orthogonal resonator modes. In particular, we design perturbations that couple "bright" dipole modes to "dark" dipole modes whose radiative decay is suppressed by local field effects in the array. Our approach is widely scalable from the near-infrared to radio frequencies. We first unravel the Fano resonance behavior through numerical simulations of a germanium resonator-based metasurface that achieves a quality factor of ∼1300 at ∼10.8 μm. Then, we present two experimental demonstrations operating in the near-infrared (∼1 μm): a silicon-based implementation that achieves a quality factor of ∼350; and a gallium arsenide-based structure that achieves a quality factor of ∼600, the highest near-infrared quality factor experimentally demonstrated to date with this kind of metasurface. Importantly, large electromagnetic field enhancements appear within the resonators at the Fano resonant frequencies. We envision that combining high quality factor, high field enhancement resonances with nonlinear and active/gain materials such as gallium arsenide will lead to new classes of active optical devices.

More Details

Enhanced infrared detectors using resonant structures combined with thin type-II superlattice absorbers

Applied Physics Letters

Goldflam, Michael; Kadlec, Emil A.; Olson, B.V.; Klem, John F.; Hawkins, Samuel D.; Parameswaran, Sivasubramanian; Coon, Wesley; Keeler, Gordon A.; Fortune, Torben; Tauke-Pedretti, Anna; Wendt, Joel R.; Shaner, Eric A.; Davids, Paul; Kim, Jin K.; Peters, David

We examined the spectral responsivity of a 1.77 μm thick type-II superlattice based long-wave infrared detector in combination with metallic nanoantennas. Coupling between the Fabry-Pérot cavity formed by the semiconductor layer and the resonant nanoantennas on its surface enables spectral selectivity, while also increasing peak quantum efficiency to over 50%. Electromagnetic simulations reveal that this high responsivity is a direct result of field-enhancement in the absorber layer, enabling significant absorption in spite of the absorber's subwavelength thickness. Notably, thinning of the absorbing material could ultimately yield lower photodetector noise through a reduction in dark current while improving photocarrier collection efficiency. The temperature- and incident-angle-independent spectral response observed in these devices allows for operation over a wide range of temperatures and optical systems. This detector paradigm demonstrates potential benefits to device performance with applications throughout the infrared.

More Details

Tailoring dielectric resonator geometries for directional scattering, Huygens' metasurfaces, and high quality-factor Fano resonances

2016 URSI International Symposium on Electromagnetic Theory, EMTS 2016

Campione, Salvatore; Basilio, Lorena I.; Warne, Larry K.; Langston, William L.; Luk, Ting S.; Wendt, Joel R.; Liu, Sheng; Brener, Igal; Sinclair, Michael B.

Metamaterial dielectric resonators represent a promising path toward low-loss metamaterials at optical frequencies. In this paper we utilize perturbations of high symmetry resonator geometries, such as cubes, either to overlap the electric and magnetic dipole resonances, thereby enabling directional scattering and Huygens' metasurfaces, or to induce couplings between the otherwise orthogonal resonator modes to achieve high-quality factor Fano resonances. Our results are fully scalable across any frequency bands where high-permittivity dielectric materials are available, including microwave, THz, and infrared frequencies.

More Details

Fabrication of quantum dots in undoped Si/Si0.8Ge0.2 heterostructures using a single metal-gate layer

Applied Physics Letters

Lu, Tzu M.; Foulk, James W.; Muller, Richard P.; Nielsen, Erik N.; Bethke, Donald; Ten Eyck, Gregory A.; Pluym, Tammy; Wendt, Joel R.; Dominguez, Jason; Lilly, Michael; Carroll, M.S.; Wanke, Michael C.

Enhancement-mode Si/SiGe electron quantum dots have been pursued extensively by many groups for their potential in quantum computing. Most of the reported dot designs utilize multiple metal-gate layers and use Si/SiGe heterostructures with Ge concentration close to 30%. Here, we report the fabrication and low-temperature characterization of quantum dots in the Si/Si0.8Ge0.2 heterostructures using only one metal-gate layer. We find that the threshold voltage of a channel narrower than 1 μm increases as the width decreases. The higher threshold can be attributed to the combination of quantum confinement and disorder. We also find that the lower Ge ratio used here leads to a narrower operational gate bias range. The higher threshold combined with the limited gate bias range constrains the device design of lithographic quantum dots. We incorporate such considerations in our device design and demonstrate a quantum dot that can be tuned from a single dot to a double dot. The device uses only a single metal-gate layer, greatly simplifying device design and fabrication.

More Details

Near-Infrared Strong Coupling between Metamaterials and Epsilon-near-Zero Modes in Degenerately Doped Semiconductor Nanolayers

ACS Photonics

Campione, Salvatore; Wendt, Joel R.; Keeler, Gordon A.; Luk, Ting S.

Epsilon-near-zero (ENZ) modes provide a new path for tailoring light-matter interactions at the nanoscale. In this paper, we analyze a strongly coupled system at near-infrared frequencies comprising plasmonic metamaterial resonators and ENZ modes supported by degenerately doped semiconductor nanolayers. In strongly coupled systems that combine optical cavities and intersubband transitions, the polariton splitting (i.e., the ratio of Rabi frequency to bare cavity frequency) scales with the square root of the wavelength, thus favoring the long-wavelength regime. In contrast, we observe that the polariton splitting in ENZ/metamaterial resonator systems increases linearly with the thickness of the nanolayer supporting the ENZ modes. In this work, we employ an indium-tin-oxide nanolayer and observe a large experimental polariton splitting of approximately 30% in the near-infrared. This approach opens up many promising applications, including nonlinear optical components and tunable optical filters based on controlling the polariton splitting by adjusting the frequency of the ENZ mode.

More Details

Single shot spin readout with a cryogenic high-electron-mobility transistor amplifier at sub-Kelvin temperatures

Applied Physics Letters

Tracy, Lisa A.; Luhman, Dwight R.; Carr, Stephen M.; Bishop, Nathaniel C.; Ten Eyck, Gregory A.; Pluym, Tammy; Wendt, Joel R.; Lilly, Michael; Carroll, M.S.

We use a cryogenic high-electron-mobility transistor circuit to amplify the current from a single electron transistor, allowing for demonstration of single shot readout of an electron spin on a single P donor in Si with 100 kHz bandwidth and a signal to noise ratio of ~9. In order to reduce the impact of cable capacitance, the amplifier is located adjacent to the Si sample, at the mixing chamber stage of a dilution refrigerator. For a current gain of ~2.7 x 103 the power dissipation of the amplifier is 13 μW, the bandwidth is ~1.3 MHz, and for frequencies above 300 kHz the current noise referred to input is ≤ 70 fA/√Hz. Furthermore, with this amplification scheme, we are able to observe coherent oscillations of a P donor electron spin in isotopically enriched 28Si with 96% visibility.

More Details

Nuclear-driven electron spin rotations in a single donor coupled to a silicon quantum dot

Science

Carroll, M.S.; Harvey-Collard, Patrick; Jacobson, Noah T.; Rudolph, Martin; Dominguez, Jason; Ten Eyck, Gregory A.; Wendt, Joel R.; Pluym, Tammy; Foulk, James W.; Lilly, Michael; Pioro-Ladriere, Michel

Silicon chips hosting a single donor can be used to store and manipulate one bit of quantum information. However, a central challenge for realizing quantum logic operations is to couple donors to one another in a controllable way. To achieve this, several proposals rely on using nearby quantum dots (QDs) to mediate an interaction. In this work, we demonstrate the coherent coupling of electron spins between a single 31 P donor and an enriched 28 Si metal-oxide-semiconductor few-electron QD. We show that the electron-nuclear spin interaction on the donor can drive coherent rotations between singlet and triplet electron spin states of the QD-donor system. Moreover, we are able to tune electrically the exchange interaction between the QD and donor electrons. Furthermore, the combination of single-nucleus-driven rotations and voltage-tunable exchange provides every key element for future all-electrical control of spin qubits, while requiring only a single QD and no additional magnetic field gradients

More Details

Enhanced optical nonlinearities in the near-infrared using III-nitride heterostructures coupled to metamaterials

Applied Physics Letters

Wolf, Omri; Allerman, A.A.; Wendt, Joel R.; Song, Alex Y.; Shaner, Eric A.; Brener, Igal; Ma, Xuedan

We use planar metamaterial resonators to enhance by more than two orders of magnitude the near infrared second harmonic generation obtained from intersubband transitions in III-Nitride heterostructures. The improvement arises from two factors: employing an asymmetric double quantum well design and aligning the resonators' cross-polarized resonances with the intersubband transition energies. The resulting nonlinear metamaterial operates at wavelengths where single photon detection is available, and represents a different class of sources for quantum photonics related phenomena.

More Details

Silicon Quantum Dots with Counted Antimony Donor Implants

Sandia journal manuscript; Not yet accepted for publication

Singh, Meenakshi; Pacheco, Jose L.; Perry, Daniel L.; Ten Eyck, Gregory A.; Wendt, Joel R.; Pluym, Tammy; Dominguez, Jason; Manginell, Ronald; Luhman, Dwight R.; Bielejec, Edward S.; Lilly, Michael; Carroll, M.S.

Deterministic control over the location and number of donors is crucial to donor spin quantum bits (qubits) in semiconductor based quantum computing. A focused ion beam is used to implant close to quantum dots. Ion detectors are integrated next to the quantum dots to sense the implants. The numbers of ions implanted can be counted to a precision of a single ion. Regular coulomb blockade is observed from the quantum dots. Charge offsets indicative of donor ionization, are observed in devices with counted implants.

More Details

Transport spectroscopy of low disorder silicon tunnel barriers with and without Sb implants

Nanotechnology

Carroll, M.S.; Wendt, Joel R.; Bishop, Nathaniel B.; Dominguez, Jason; Lilly, Michael; Shirkhorshidian, A.

We present transport measurements of silicon MOS split gate structures with and without Sb implants. We observe classical point contact (PC) behavior that is free of any pronounced unintentional resonances at liquid He temperatures. The implanted device has resonances superposed on the PC transport indicative of transport through the Sb donors. We fit the differential conductance to a rectangular tunnel barrier model with a linear barrier height dependence on source-drain voltage and non-linear dependence on gate bias. Effects such as Fowler-Nordheim (FN) tunneling and image charge barrier lowering (ICBL) are considered. Barrier heights and widths are estimated for the entire range of relevant biases. The barrier heights at the locations of some of the resonances for the implanted tunnel barrier are between 15-20 meV, which are consistent with transport through shallow partially hybridized Sb donors. The dependence of width and barrier height on gate voltage is found to be linear over a wide range of gate bias in the split gate geometry but deviates considerably when the barrier becomes large and is not described completely by standard 1D models such as FN or ICBL effects.

More Details
Results 51–100 of 286
Results 51–100 of 286