Publications

Results 151–200 of 220

Search results

Jump to search filters

High-throughput stochastic tensile performance of additively manufactured stainless steel

Journal of Materials Processing Technology

Boyce, Brad L.; Salzbrenner, Bradley; Rodelas, Jeffrey; Madison, Jonathan D.; Jared, Bradley H.; Swiler, Laura P.; Shen, Yu L.

An adage within the Additive Manufacturing (AM) community is that “complexity is free”. Complicated geometric features that normally drive manufacturing cost and limit design options are not typically problematic in AM. While geometric complexity is usually viewed from the perspective of part design, this advantage of AM also opens up new options in rapid, efficient material property evaluation and qualification. In the current work, an array of 100 miniature tensile bars are produced and tested for a comparable cost and in comparable time to a few conventional tensile bars. With this technique, it is possible to evaluate the stochastic nature of mechanical behavior. The current study focuses on stochastic yield strength, ultimate strength, and ductility as measured by strain at failure (elongation). However, this method can be used to capture the statistical nature of many mechanical properties including the full stress-strain constitutive response, elastic modulus, work hardening, and fracture toughness. Moreover, the technique could extend to strain-rate and temperature dependent behavior. As a proof of concept, the technique is demonstrated on a precipitation hardened stainless steel alloy, commonly known as 17-4PH, produced by two commercial AM vendors using a laser powder bed fusion process, also commonly known as selective laser melting. Using two different commercial powder bed platforms, the vendors produced material that exhibited slightly lower strength and markedly lower ductility compared to wrought sheet. Moreover, the properties were much less repeatable in the AM materials as analyzed in the context of a Weibull distribution, and the properties did not consistently meet minimum allowable requirements for the alloy as established by AMS. The diminished, stochastic properties were examined in the context of major contributing factors such as surface roughness and internal lack-of-fusion porosity. This high-throughput capability is expected to be useful for follow-on extensive parametric studies of factors that affect the statistical reliability of AM components.

More Details

Next Generation Photovoltaic Technologies For High-Performance Remote Power Generation (Final Report)

Lentine, Anthony L.; Nielson, Greg N.; Riley, Daniel; Okandan, M.; Sweatt, W.C.; Jared, Bradley H.; Resnick, Paul; Kim, B.; Kratochvil, Jay; Anderson, B.J.; Cruz-Campa, J.L.; Gupta, Vipin P.; Tauke-Pedretti, Anna; Cederberg, J.G.; Paap, Scott M.; Sanchez, Carlos A.; Nordquist, Christopher D.; Saavedra, Michael P.; Ballance, Mark; Nguyen, J.; Alford, Charles; Nelson, John S.; Lavin, Judith M.; Clews, P.; Pluym, Tammy; Wierer, J.; Wang, George T.; Biefeld, Robert M.; Luk, Ting S.; Brener, Igal; Granata, J.; Aguirre, Brandon A.; Haney, Mike; Agrawal, Gautam; Gu, Tian

A unique, micro-scale architecture is proposed to create a novel hybrid concentrated photovoltaic system. Micro-scale (sub-millimeter wide), multi-junction cells are attached to a large-area silicon cell backplane (several inches wide) that can optimally collect both direct and diffuse light. By using multi- junction III-V cells, we can get the highest possible efficiency of the direct light input. In addition, by collecting the diffuse light in the large-area silicon cell, we can produce power on cloudy days when the concentrating cells would have minimal output. Through the use of micro-scale cells and lenses, the overall assembly will provide higher efficiency than conventional concentrators and flat plates, while keeping the form factor of a flat plate module. This report describes the hybrid concept, the design of a prototype, including the PV cells and optics, and the experimental results.

More Details

Defect Characterization for Material Assurance in Metal Additive Manufacturing (FY15-0664)

Salzbrenner, Bradley; Boyce, Brad L.; Jared, Bradley H.; Rodelas, Jeffrey; Laing, John R.

No industry-wide standards yet exist for minimum properties in additively manufactured (AM) metals. While AM alloys such as 17-4 precipitation hardened stainless steel have been shown to have average properties that can be comparable to wrought or cast product, they suffer from inconsistent performance. Variability in the feedstock powder, feature sizes, thermal history, and laser performance can lead to unpredictable surface finish, chemistry, phase content, and defects. To address this issue, rapid, efficient, high-throughput mechanical testing and data analysis was developed, providing profound statistical insight into the stochastic variability in properties. With this new approach, 1000’s of comprehensive tensile tests can be performed for the cost of 10’s of conventional tests. This new high-throughput approach provides a material qualification pathway that is commensurate with the quick turn-around benefit of AM.

More Details

Microsystem Enabled Photovoltaics

Nielson, Gregory; Cruz Campa, Jose L.; Okandan, Murat; Lentine, Anthony L.; Sweatt, W.C.; Gupta, Vipin P.; Tauke-Pedretti, Anna; Jared, Bradley H.; Resnick, Paul; Cederberg, Jeffrey; Paap, Scott M.; Sanchez, Carlos A.; Biefeld, Robert M.; Langlois, Eric; Yang, Benjamin; Koleske, Daniel; Wierer, Jonathan; Miller, William K.; Elisberg, Brenton; Foulk, James W.; Luna, Ian; Saavedra, Michael P.; Alford, Charles; Ballance, Mark; Wiwi, Michael; Samora, Sally; Chavez, Julie; Pipkin, Jennifer R.; Nguyen, Janet; Anderson, Ben; Gu, Tian; Agrawal, Gautum; Nelson, Jeffrey

Abstract not provided.

Cost analysis of flat-plate concentrators employing microscale photovoltaic cells for high energy per unit area applications

2014 IEEE 40th Photovoltaic Specialist Conference, PVSC 2014

Paap, Scott; Gupta, Vipin P.; Tauke-Pedretti, Anna; Resnick, Paul; Sanchez, Carlos A.; Nielson, Gregory N.; Cruz-Campa, Jose L.; Jared, Bradley H.; Nelson, Jeffrey; Okandan, Murat; Sweatt, W.C.

Microsystems Enabled Photovoltaics (MEPV) is a relatively new field that uses microsystems tools and manufacturing techniques familiar to the semiconductor industry to produce microscale photovoltaic cells. The miniaturization of these PV cells creates new possibilities in system designs that can be used to reduce costs, enhance functionality, improve reliability, or some combination of all three. In this article, we introduce analytical tools and techniques to estimate the costs associated with a hybrid concentrating photovoltaic system that uses multi-junction microscale photovoltaic cells and miniaturized concentrating optics for harnessing direct sunlight, and an active c-Si substrate for collecting diffuse sunlight. The overall model comprises components representing costs and profit margin associated with the PV cells, concentrating optics, balance of systems, installation, and operation. This article concludes with an analysis of the component costs with particular emphasis on the microscale PV cell costs and the associated tradeoffs between cost and performance for the hybrid CPV design.

More Details

Design of wearable binoculars with on-demand zoom

Proceedings of SPIE - The International Society for Optical Engineering

Boye, Robert; Wolfley, Steven; Yelton, W.G.; Goeke, Ronald S.; Hunt, Jeffery P.; Ison, Aaron; Jared, Bradley H.; Pillars, Jamin R.; Saavedra, Michael P.; Sweatt, W.C.; Winrow, Edward G.

Sandia has developed an optical design for wearable binoculars utilizing freeform surfaces and switchable mirrors. The goals of the effort included a design lightweight enough to be worn by the user while providing a useful field of view and magnification as well as non-mechanical switching between normal and zoomed vision. Sandia's approach is a four mirror, off-axis system taking advantage of the weight savings and chromatic performance of a reflective system. The system incorporates an electrochromic mirror on the final surface before the eye allowing the user to switch between viewing modes. Results from a prototype of a monocular version with 6.6x magnification will be presented. The individual mirrors, including three off-axis aspheres and one true freeform, were fabricated using a diamond-turning based process. A slow-slide servo process was used for the freeform element. Surface roughness and form measurement of the freeform mirror will be presented as well as the expected impact on performance. The alignment and assembly procedure will be reviewed as well as the measured optical performance of the prototype. In parallel to the optical design work, development of an electrochromic mirror has provided a working device with faster switching than current state of the art. Switchable absorbers have been demonstrated with switching times less than 0.5 seconds. The deposition process and characterization of these devices will be presented. Finally, details of an updated optical design with additional freeform surfaces will be presented as well as plans for integrating the electrochromic mirror into the system. © 2013 SPIE.

More Details

Flat plate concentrators with large acceptance angle enabled by micro cells and mini lenses: performance evaluation

Cruz-Campa, Jose L.; Anderson, Benjamin J.; Gupta, Vipin P.; Tauke-Pedretti, Anna; Cederberg, Jeffrey G.; Paap, Scott M.; Sanchez, Carlos A.; Nordquist, Christopher D.; Nielson, Gregory N.; Saavedra, Michael P.; Ballance, Mark; Nguyen, Janet; Alford, Charles; Riley, Daniel; Okandan, Murat; Lentine, Anthony L.; Sweatt, W.C.; Jared, Bradley H.; Resnick, Paul; Kratochvil, Jay A.

Abstract not provided.

Results 151–200 of 220
Results 151–200 of 220