Discovery of stable high-entropy ceramics from an expansive composition space via active learning
Abstract not provided.
Abstract not provided.
AIP Advances
Photocathodes based on GaAs and other III-V semiconductors are capable of producing highly spin-polarized electron beams. GaAs/GaAsP superlattice photocathodes exhibit high spin polarization; however, the quantum efficiency (QE) is limited to 1% or less. To increase the QE, we fabricated a GaAs/GaAsP superlattice photocathode with a Distributed Bragg Reflector (DBR) underneath. This configuration creates a Fabry-Pérot cavity between the DBR and GaAs surface, which enhances the absorption of incident light and, consequently, the QE. These photocathode structures were grown using molecular beam epitaxy and achieved record quantum efficiencies exceeding 15% and electron spin polarization of about 75% when illuminated with near-bandgap photon energies.
Abstract not provided.
Bulletin of the Seismological Society of America
Several sources of interest often generate both low-frequency acoustic and seismic signals due to energy propagation through the atmosphere and the solid Earth. Seismic and acoustic observations are associated with a wide range of sources, including earthquakes, volcanoes, bolides, chemical and nuclear explosions, ocean noise, and others. The fusion of seismic and acoustic observations contributes to a better understanding of the source, both in terms of constraining source location and physics, as well as the seismic to acoustic coupling of energy. In this review, we summarize progress in seismoacoustic data processing, including recent developments in open-source data availability, low-cost seismic and acoustic sensors, and large-scale deployments of collocated sensors from 2010 to 2022. Similarly, we outline the recent advancements in modeling efforts for both source characteristics and propagation dynamics. Finally, we highlight the advantages of fusing multiphenomenological signals, focusing on current and future techniques to improve source detection, localization, and characterization efforts. This review aims to serve as a reference for seismologists, acousticians, and others within the growing field of seismoacoustics and multiphenomenology research.
Abstract not provided.
Liquefied petroleum gas (LPG) is used in heating, cooking, and as a vehicle fuel (called autogas). A safety risk assessment may be needed to assess potential hazard scenarios and inform the regulations, codes, and standards that apply to LPG facilities, such as autogas refueling facilities. The frequency of unintended releases in an LPG system is an important aspect of a system quantitative risk assessment. This report documents estimation of leakage frequencies for individual components of LPG systems. These frequencies are described using uncertainty distributions obtained with Bayesian statistical methods, generic data, and LPG data which were publicly available. There was a lack of LPG data in the literature, so frequencies for most components were developed with generic data and should be used cautiously; without additional information about component leak frequencies in LPG systems, it is not known whether these generic frequencies may be conservative or non-conservative.
IEEE Transactions on Applied Superconductivity
Reversible logic schemes using flux solitons (fluxons) on long Josephson junctions (LJJs) have recently been proposed. The attraction of the fluxon is that it propagates ballistically along an LJJ until it encounters a change in the character of the LJJ, often a designed circuit element. Logic gates involve fluxons interacting with circuit elements and with other fluxons. However, testing of ballistic fluxon circuits requires other circuits outside the logic family to direct and control fluxon motion. We discuss two such non-reversible fluxon control circuits. First, the polarity filter gate is a simple non-reversible gate that allows one polarity of fluxon to pass, while reflecting the other polarity. In the off state both polarities reflect. Second, the polarity separator generalizes on the polarity filter concept and allows separation of the two fluxon polarities into different LJJs. We discuss simulations of these structures and possible applications.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
An aircraft commander needs to be aware of weather phenomena that might be hazardous to his aircraft and mission. An important tool for this is airborne weather (WX) detection radar. The airborne WX radar needs to map weather for the aircraft commander that might be relevant to the safety of the aircraft, which involves both detecting a weather phenomenon, and to some extent seeing through it to detect weather phenomena behind it. Many factors influence the performance of an airborne WX radar
Journal of Physical Chemistry. C
When high-energy-density materials are subjected to thermal or mechanical insults at extreme conditions (shock loading), a coupled response between the thermo-mechanical and chemical behaviors is systematically induced. Herein we develop a reaction model for the fast chemistry of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) at the mesoscopic scale, where the chemical behavior is determined by underlying microscopic reactive simulations. The slow carbon cluster formation is not discussed in the present work. All-atom reactive molecular dynamics (MD) simulations are performed with the ReaxFF potential, and a reduced-order chemical kinetics model for TATB is fitted to isothermal and adiabatic simulations of single crystal chemical decomposition. Unsupervised machine learning techniques based on non-negative matrix factorization are applied to MD trajectories to model the decomposition kinetics of TATB in terms of a four-component model. The associated heats of reaction are fit to the temperature evolution from adiabatic decomposition trajectories. Using a chemical species analysis, we show that non-negative matrix factorization captures the main chemical decomposition steps of TATB and provides an accurate estimation of their evolution with temperature. The final analytical formulation, coupled to a diffusion term, is incorporated into a continuum formalism, and simulation results are compared one-to-one against MD simulations of 1D reaction propagation along different crystallographic directions and with different initial temperatures. A good agreement is found for both the temporal and spatial evolution of the temperature field.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This report summarizes the fiscal year 2023 (FY23) status of the second phase of a series of borehole heater tests in salt at the Waste Isolation Pilot Plant (WIPP) funded by the Disposal Research and Development (R&D) program of the Spent Fuel & Waste Science and Technology (SFWST) office at the US Department of Energy’s Office of Nuclear Energy’s (DOE-NE) Office in the Spent Fuel and Waste Disposition (SFWD) program.
Abstract not provided.