Publications

Results 651–675 of 96,771

Search results

Jump to search filters

Multiscale Reactive Model for 1,3,5-Triamino-2,4,6-trinitrobenzene Inferred by Reactive MD Simulations and Unsupervised Learning

Journal of Physical Chemistry. C

Lafourcade, Paul; Maillet, Jean-Bernard; Roche, Jerome; Sakano, Michael N.; Hamilton, Brenden W.; Strachan, Alejandro

When high-energy-density materials are subjected to thermal or mechanical insults at extreme conditions (shock loading), a coupled response between the thermo-mechanical and chemical behaviors is systematically induced. Herein we develop a reaction model for the fast chemistry of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) at the mesoscopic scale, where the chemical behavior is determined by underlying microscopic reactive simulations. The slow carbon cluster formation is not discussed in the present work. All-atom reactive molecular dynamics (MD) simulations are performed with the ReaxFF potential, and a reduced-order chemical kinetics model for TATB is fitted to isothermal and adiabatic simulations of single crystal chemical decomposition. Unsupervised machine learning techniques based on non-negative matrix factorization are applied to MD trajectories to model the decomposition kinetics of TATB in terms of a four-component model. The associated heats of reaction are fit to the temperature evolution from adiabatic decomposition trajectories. Using a chemical species analysis, we show that non-negative matrix factorization captures the main chemical decomposition steps of TATB and provides an accurate estimation of their evolution with temperature. The final analytical formulation, coupled to a diffusion term, is incorporated into a continuum formalism, and simulation results are compared one-to-one against MD simulations of 1D reaction propagation along different crystallographic directions and with different initial temperatures. A good agreement is found for both the temporal and spatial evolution of the temperature field.

More Details

Optimization with Neural Network Feasibility Surrogates: Formulations and Application to Security-Constrained Optimal Power Flow

Energies

Kilwein, Zachary A.; Jalving, Jordan; Blakely, Logan; Eydenberg, Michael S.; Skolfield, Joshua K.; Laird, Carl; Boukouvala, Fani

In many areas of constrained optimization, representing all possible constraints that give rise to an accurate feasible region can be difficult and computationally prohibitive for online use. Satisfying feasibility constraints becomes more challenging in high-dimensional, non-convex regimes which are common in engineering applications. A prominent example that is explored in the manuscript is the security-constrained optimal power flow (SCOPF) problem, which minimizes power generation costs, while enforcing system feasibility under contingency failures in the transmission network. In its full form, this problem has been modeled as a nonlinear two-stage stochastic programming problem. In this work, we propose a hybrid structure that incorporates and takes advantage of both a high-fidelity physical model and fast machine learning surrogates. Neural network (NN) models have been shown to classify highly non-linear functions and can be trained offline but require large training sets. In this work, we present how model-guided sampling can efficiently create datasets that are highly informative to a NN classifier for non-convex functions. We show how the resultant NN surrogates can be integrated into a non-linear program as smooth, continuous functions to simultaneously optimize the objective function and enforce feasibility using existing non-linear solvers. Overall, this allows us to optimize instances of the SCOPF problem with an order of magnitude CPU improvement over existing methods.

More Details

Performance Limits for Airborne Weather Detection Radar

Doerry, Armin; Liu, Guoqing

An aircraft commander needs to be aware of weather phenomena that might be hazardous to his aircraft and mission. An important tool for this is airborne weather (WX) detection radar. The airborne WX radar needs to map weather for the aircraft commander that might be relevant to the safety of the aircraft, which involves both detecting a weather phenomenon, and to some extent seeing through it to detect weather phenomena behind it. Many factors influence the performance of an airborne WX radar

More Details

Mallat Scattering Transformation based surrogate for Magnetohydrodynamics

Computational Mechanics

Glinsky, Michael E.; Maupin, Kathryn A.

A Machine and Deep Learning (MLDL) methodology is developed and applied to give a high fidelity, fast surrogate for 2D resistive MagnetoHydroDynamic (MHD) simulations of Magnetic Liner Inertial Fusion (MagLIF) implosions. The resistive MHD code GORGON is used to generate an ensemble of implosions with different liner aspect ratios, initial gas preheat temperatures (that is, different adiabats), and different liner perturbations. The liner density and magnetic field as functions of x, y, and z were generated. The Mallat Scattering Transformation (MST) is taken of the logarithm of both fields and a Principal Components Analysis (PCA) is done on the logarithm of the MST of both fields. The fields are projected onto the PCA vectors and a small number of these PCA vector components are kept. Singular Value Decompositions of the cross correlation of the input parameters to the output logarithm of the MST of the fields, and of the cross correlation of the SVD vector components to the PCA vector components are done. This allows the identification of the PCA vectors vis-a-vis the input parameters. Finally, a Multi Layer Perceptron (MLP) neural network with ReLU activation and a simple three layer encoder/decoder architecture is trained on this dataset to predict the PCA vector components of the fields as a function of time. Details of the implosion, stagnation, and the disassembly are well captured. Examination of the PCA vectors and a permutation importance analysis of the MLP show definitive evidence of an inverse turbulent cascade into a dipole emergent behavior. The orientation of the dipole is set by the initial liner perturbation. The analysis is repeated with a version of the MST which includes phase, called Wavelet Phase Harmonics (WPH). While WPH do not give the physical insight of the MST, they can and are inverted to give field configurations as a function of time, including field-to-field correlations.

More Details

Record quantum efficiency from strain compensated superlattice GaAs/GaAsP photocathode for spin polarized electron source

AIP Advances

Biswas, Jyoti; Cultrera, Luca; Liu, Wei; Wang, Erdong; Skaritka, John; Kisslinger, Kim; Hawkins, Samuel D.; Lee, Stephen R.; Klem, John F.

Photocathodes based on GaAs and other III-V semiconductors are capable of producing highly spin-polarized electron beams. GaAs/GaAsP superlattice photocathodes exhibit high spin polarization; however, the quantum efficiency (QE) is limited to 1% or less. To increase the QE, we fabricated a GaAs/GaAsP superlattice photocathode with a Distributed Bragg Reflector (DBR) underneath. This configuration creates a Fabry-Pérot cavity between the DBR and GaAs surface, which enhances the absorption of incident light and, consequently, the QE. These photocathode structures were grown using molecular beam epitaxy and achieved record quantum efficiencies exceeding 15% and electron spin polarization of about 75% when illuminated with near-bandgap photon energies.

More Details

Dendritic Computation for Neuromorphic Applications

ACM International Conference Proceeding Series

Cardwell, Suma G.; Chance, Frances S.

In this paper, we highlight how computational properties of biological dendrites can be leveraged for neuromorphic applications. Specifically, we demonstrate analog silicon dendrites that support multiplication mediated by conductance-based input in an interception model inspired by the biological dragonfly. We also demonstrate spatiotemporal pattern recognition and direction selectivity using dendrites on the Loihi neuromorphic platform. These dendritic circuits can be assembled hierarchically as building blocks for classifying complex spatiotemporal patterns.

More Details

Defect graph neural networks for materials discovery in high-temperature clean-energy applications

Nature Computational Science

Witman, Matthew; Goyal, Anuj; Ogitsu, Tadashi; McDaniel, Anthony H.; Lany, Stephan

We present a graph neural network approach that fully automates the prediction of defect formation enthalpies for any crystallographic site from the ideal crystal structure, without the need to create defected atomic structure models as input. Here we used density functional theory reference data for vacancy defects in oxides, to train a defect graph neural network (dGNN) model that replaces the density functional theory supercell relaxations otherwise required for each symmetrically unique crystal site. Interfaced with thermodynamic calculations of reduction entropies and associated free energies, the dGNN model is applied to the screening of oxides in the Materials Project database, connecting the zero-kelvin defect enthalpies to high-temperature process conditions relevant for solar thermochemical hydrogen production and other energy applications. The dGNN approach is applicable to arbitrary structures with an accuracy limited principally by the amount and diversity of the training data, and it is generalizable to other defect types and advanced graph convolution architectures. It will help to tackle future materials discovery problems in clean energy and beyond.

More Details
Results 651–675 of 96,771
Results 651–675 of 96,771